Appendix E

Geotechnical Report

MR. ADAM O'NEILL
GLASSELL PARK, LLC
1035 SOUTH GRAND AVENUE, $3{ }^{\text {RD }}$ FLOOR LOS ANGELES, CALIFORNIA 90015

PRELIMINARY
GEOTECHNICAL ENGINEERING AND ENGINEERING GEOLOGY INVESTIGATION

FOR

THIRTY-TWO PROPERTIES LOCATED ALONG BRILLIANT DRIVE, HAVERHILL DRIVE, HAVERHILL WAY AND SUNDOWN DRIVE LOS ANGELES

> Prepared By

SASSAN Geosciences, Inc.
1290 North Lake Avenue, Suite 204
Pasadena, California 91104-2869

March 20, 2015

$\boldsymbol{S A S}$ SASSAN Geosciences, Inc.

March 20, 2015

Mr. Adam O'Neill
GLASSELL PARK, LLC
1035 South Grand Avenue, $3^{\text {rd }}$ Floor
Los Angeles, CA 90015

Subject: Preliminary Geotechnical Engineering and Engineering Geology Investigation
Associated Parcel Numbers: $\quad 5462-021-003,5462-021-004,5462-021-005$, 5462-021-006, 5462-021-012, 5462-021-013, 5462-021-014, 5462-021-015, 5462-021-016, 5462-021-017, 5462-021-018, 5462-022-009, 5462-022-010, 5462-022-012, 5462-022-013, 5462-022-014, 5462-022-015, 5462-022-016, 5462-022-017, 5462-022-029, 5462-023-006, 5462-023-007, 5462-023-008, 5462-024-024, 5462-024-025, 5462-024-026, 5462-024-027, 5462-024-028, 5462-024-029, 5462-024-030, 5462-024-031, 5462-024-032.

SAS File Number: 4STO128

Dear Mr. O'Neill:

SASSAN Geosciences, Inc. (SAS) has completed a preliminary geotechnical engineering and engineering geology investigation for the subject properties. Our investigation was performed to determine the nature of surface and subsurface soils and to evaluate their physical and engineering properties. The results were then analyzed, and recommendations for foundation design and related parameters were prepared. This report presents our findings and recommendations.

LOCATION AND SITE DESCRIPTION

The subject thirty-two (32) properties are located along Brilliant Drive, Haverhill Drive, Haverhill Way and Sundown Drive in Mount Washington section of the City of Los Angeles, California. A vicinity map is presented on Figure A-1 in Appendix A of this report. These properties are comprised of vacant lots located on a descending, generally east-facing natural slope with inclinations ranging from gentle to steep. A plot plan indicating the locations of the subject properties is presented on Figure A-2 in Appendix A of this report.

OBJECTIVE

The owners wish to assess the geotechnical and geological characteristics of the underlying ground in order to develop the existing thirty-two (32) vacant lots and to construct two-story and three-story single-family residences with attached garages, one on each of the respective properties. The review of the preliminary architectural plans indicates that implementation of the proposed improvements will require grading of the existing unpaved streets, as well as the subject properties. In addition, the development of
the lots will require construction of retaining walls up to approximately twenty-three (23) feet in height. A plot plan indicating the locations of the existing and proposed improvements is presented on Figure A-2 in Appendix A of this report.

FIELD INVESTIGATION

Subsurface explorations were performed in July 2006 (twelve test pits), December 2006 (eight test pits), August 2014 (ten test pits) and January 2015 (nine test pits), which involved excavating a total of thirty-nine (39) test pits to a maximum depth of approximately eighteen (18) feet. The excavating operation was performed utilizing a backhoe and by manual labor. Two-and-one-half-inch (2.5) diameter tube samples and grab samples were obtained from the test pits. Earth materials encountered were classified in accordance with the visual-manual procedures of the Unified Soil Classification System.

An oversized plot plan indicating the approximate test pit locations is presented on Figure A-2 in Appendix A of this report.

SITE GEOLOGIC CONDITIONS

The site is located in the Mount Washington area at the northwest end of the Repetto Hills, approximately four miles north of downtown Los Angeles. The proposed development consists of thirty-two (32) homes to be located midslope and near the base of a generally northeast-facing, natural slope inclined at slope angles varying from 20 to 30 degrees. The site is currently undeveloped and is accessed from a dirt road that continues from the paved terminus of Haverhill Drive. Several roads, including Haverhill Drive,

Haverhill Way and Brilliant Drive, will have to be graded to provide access to the proposed home sites.

The natural slope varies in height but generally is approximately 100 to 140 feet in vertical height (see Geologic Cross-Sections, Figures A-3 through A-6 in Appendix A of this report). Although the site is generally in natural condition, a dirt road, approximately coincident with the proposed alignment of the Haverhill Drive, provides access to the site area from the end of pavement. Undocumented fill soils have been placed in a small canyon area between lots 132 to 134 west of the road and lots 118 to 120 to the east. Similar undocumented fill soils have been placed in an area of intersection of Haverhill Way and Brilliant Drive between lot 161 north of the intersection and lot 191 to the south.

The site is underlain by bedrock of the Monterey Formation consisting of generally thinbedded to laminated, white to tan, shaly siltstone with sandstone interbeds. The bedrock is mantled by residual soil/colluvium varying in thickness from 1.5 feet to a maximum of approximately 15 feet in the subdued canyon area at the toe of slope. The thickness of undocumented fill, overlying the native residual soil, encountered on lots 118 to 120 and lots 132 to 134 is up to approximately 15 feet. The strike and dip of bedding within the Monterey Formation on the southern portion of the property is relatively uniform, striking northwesterly and dipping at moderate to steep angles (32 to 61 degrees) to the southwest (in-to-slope), as shown on the Site Plan, Figure A-2, and Cross-Sections, Figure A-3 through A-6 in Appendix A of this report. However, on the northern portion of the property, the strike and dip of bedding varies within the site area, indicating a synclinal fold. In this area, bedding generally strikes northwesterly and dips steeply to the northeast on the west limb of the syncline, and southeasterly on the east limb. Based on the steepness and/or direction of the dip, bedding is favorable in respect to development of the site, as shown on the Geotechnical Map, Figure A-2, and Cross-Sections, Figures A-3 through A-6 in Appendix A of this report.

A copy of a regional geologic map (Dibblee) is presented on Figure D-1 in Appendix D of this report.

EARTH MATERIALS

The earth materials encountered in the test pits consist of up to approximately eighteen (18) feet of fill and residual soil/colluvium underlain by bedrock, which extends to the depths explored. Detailed logs of the test pits are presented on Figures B-1 through B-39 in Appendix B.

GROUNDWATER

Groundwater seepage was not encountered in the test pits to the depths explored, and is not anticipated to impact the proposed construction.

LABORATORY TESTING

Moisture content (ASTM D 2216) and shear strength (ASTM D 3080) tests were performed for selected samples of soil considered to be representative of those encountered. The results of direct shear tests are presented on Figures B-40 through B-53 in Appendix B. Evaluation of the test data is reflected throughout this report.

LIQUEFACTION

The subject property is shown on the "State of California Seismic Hazard Zones" map presented on Figure C-1 in Appendix C. The site is located outside of the seismically induced liquefaction hazard zones.

The susceptibility of the site soils to liquefaction is mitigated by the presence of bedrock at a shallow depth:

SLOPE STABILITY ANALYSIS

The stability of the slope was analyzed using GSTABL7, a computer program developed to handle general slope stability problems by the Simplified Janbu and the Modified Bishop method of slices.

The most critical sections were selected for the analyses. The plan lines of these crosssections are presented on Figure A-2 in Appendix A. Sections A-A, H-H, I-I, J-J, N-N and R-R used in static and pseudo-static analyses in current (pre-graded) condition are presented on Figures E-1 through E-6, and the surficial slope stability analysis is presented on Figure E-7 in Appendix E.

A set of strength parameters was obtained from the laboratory direct shear test results. Following table summarizes the strength parameters used in slope stability analyses:

	Strength Parameters		
Material Type	Soil	Bedrock	Surficial
Depth (ft)	4	2	2
Location Number	TP-14	TP-7	TP-6
Internal Friction Angle	28	33	20
Cohesion (psf)	290	500	360
Total Unit Weight (pcf)	120	130	115
Saturated Unit Weight (pcf)	120	130	115

Seismic coefficient $\mathrm{k}_{\text {eq }}=0.324$ was used in the pseudo-static slope stability analyses. A copy of the analysis to determine the seismic coefficient is presented in Attachment No. 3 of this report.

Series of deep-seated static and pseudo-static slope stability analyses performed for current (pre-graded) condition resulted in following minimum factors of safety of: 1.697 and 1.012 respectively for section $\mathrm{A}-\mathrm{A}, 1.776$ and 1.046 respectively for section $\mathrm{H}-\mathrm{H}$, 1.909 and 1.101 respectively for section I-I, 2.698 and 1.278 respectively for section J-J; 1.992 and 1.168 respectively for section $\mathrm{N}-\mathrm{N} ; 3.020$ and 1.385 respectively for section RR. A surficial slope stability analysis for the steepest slope resulted in a minimum factor of safety of 2.50 . The results of the stability analyses are presented in Appendix E.

EQUIVALENT FLUID PRESSURE ANALYSIS

The cross-sections of the proposed homes indicate that, depending on the site gradient, subterranean levels of one (1) and sometimes two (2) levels below ground are designed by the architect of record. As such, retaining walls for these conditions will be required. This office is providing the design parameters for a total of four (4) different combinations that include one-level of subterranean, two-levels of subterranean, level ground behind the retaining wall, and finally a $2: 1(\mathrm{H}: \mathrm{V})$ gradient behind the retaining wall.

Limit equilibrium block analyses were performed to determine the values of the lateral loads and equivalent fluid pressures (EFPs) acting on proposed retaining walls. The results of the equivalent fluid pressure analyses are presented in Appendix G. The following table summarizes the recommended lateral pressure values for design of the proposed cantilevered retaining walls:

Retaining Walls	Calculated		Recommended	
	Static EFP ($p \mathrm{sf}$)	Pseudo- Static EFP (psf)	Static EFP ($p \mathrm{sf}$)	$\begin{gathered} \text { Seismic } \\ \text { EFP } \\ (p s f) \end{gathered}$
12' High Wall Fill; Level Back	23.0	20.6	30	-
12’ High Wall Fill; 2:1 Slope	38.2	33.0	43	-
24' High Wall Bdrk; Level Back	23.6	21.9	30	-
24’ High Wall Bdrk; 2:1 Slope	36.9	33.2	43	-

Our analyses indicate, that additional earth pressure due to seismic forces does not need to be applied to the proposed retaining walls. The results of the active pressure analyses are presented in Appendix G of this report.

An at-rest earth pressure increasing at a minimum rate of 60 psf per foot of depth must be used in the design of retaining walls that are braced at the top and the bottom.

CONCLUSIONS AND RECOMMENDATIONS

General

The referenced property is considered to be suitable for the proposed construction from a geotechnical engineering and engineering geology standpoint, provided that our recommendations are incorporated into the approved construction plans.

The conclusions and recommendations presented here are based on our observations at the site during our investigation, engineering judgment, and analysis of the soil samples obtained from the test pits. Minor variations of subsurface conditions are common, and major variations are possible.

General Grading

Grading areas must be stripped of all vegetation, debris, and other deleterious material. All loose soil disturbed by the removal of trees and/or structures (if applicable) must be removed and recompacted.

The existing undocumented fill and residual soil/colluvium are up to approximately eighteen (18) feet thick and are not suitable for foundation support. At locations where new fill is proposed, the existing fill and residual soil must be entirely removed and replaced with a certified engineered fill. The proposed new fill must be placed in horizontal layers, and must be benched into competent bedrock.

The maximum allowed gradient for the compacted fill slopes is $2: 1(\mathrm{H}: \mathrm{V})$, and the maximum allowed gradient for the bedrock slopes is $1.5: 1(\mathrm{H}: \mathrm{V})$.

The fill slopes shall be planted by local, drought-resistant plants.

The subject property will be subjected to a mass grading, which may require placement of fill in shallow natural canyons. Subdrains shall be laid under all fills placed in natural canyons along the flow lines. Subdrains shall be installed after the canyon bottoms have been excavated to firm material in preparation for receiving the fill. Individual design shall be shown on the grading and drainage plans for each subdrain placed along flow lines.

Temporary Excavations and Shoring

The review of the architectural plans indicates that excavations in bedrock up to approximately twenty-two (22) feet in vertical height and excavations in certified fill up to approximately twelve (12) feet in vertical height will be required during construction of the retaining walls of the proposed residences.

Based on the integrity of the site earth materials, it is our opinion that unsurcharged temporary excavations up to approximately fourteen (14) feet in vertical height may be performed continuously in accordance with the following table:

Maximum Depth of Cut $(\boldsymbol{f t})$		Maximum Slope Ratio $(\boldsymbol{H}:$ V $)$
	Bedrock	

The retaining walls over fourteen (14) feet in vertical height must be supported by a grade beam/soldier pile combination foundation. As such, due to topography of the subject property, geologic conditions and the heights of the proposed retaining walls of the residences, the temporary excavations for construction of the retaining walls may commence only after installation of the piles for support of the retaining walls of the proposed residences is completed. The proposed piles will extend up to the existing surface and will serve as a shoring during temporary excavations. The results of the analysis for stability of the temporary excavations after installation of the piles are presented in Appendix F of this report. Due to topography of the s ubject property and specifics of on-site earth materials, we are providing recommendations for the sequence of construction of retaining walls, supported by a grade beam/soldier pile combination foundation, in the next section of this report.

When the above system becomes impractical, shoring has to be designed for the temporary excavations. If such a condition arises, this office can provide the necessary strength parameters needed in the design of shoring elements.

The contractor may perform the excavation under continuous monitoring of a grading inspector who would ensure the quality of grading and presence of competent earth materials. The excavations may be left open for a temporary period of four (4) weeks. A grading inspector must be present when laborers are working within five (5) feet of the temporary cut area.

Sequence of Construction

The retaining walls over fourteen (14) feet in vertical height must be supported by a grade beam/soldier pile combination foundation. Due to topography of the subject property, geologic conditions and heights of the proposed retaining walls, we are providing following recommendations for the sequence of the construction for retaining walls over fourteen (14) feet in vertical height. The temporary excavations for construction of the retaining walls may commence only after installation of the piles for support of these retaining walls is completed. The proposed piles will extend up to the existing surface and will serve as a shoring during temporary excavations. Following are our recommendations for the sequence of the construction:

1. Drill shafts for the proposed piles for support of retaining wall of the proposed residence. The shafts must be drilled from the existing surface down to the required depth (to be determined by the consulting civil engineer).
2. The maximum spacing of the piles must be twelve (12) feet side-to-side. The results of the analysis for stability of the temporary excavations after installation of the piles are presented in Attachment No. 6 of this report.
3. Install reinforcement for the proposed piles in the drilled shafts per approved structural plans and pour concrete.
4. After the concrete attains the required strength, commence the temporary excavations for construction of the retaining wall of the proposed residence. The temporary excavation may be performed up to the maximum depth of approximately ten (10) feet below the ground surface.
5. Install dowels on the soldier piles and construct curtain of the retaining wall reinforcement per approved structural plans.
6. Construct the proposed retaining wall between the friction piles.
7. Continue the temporary excavation in ten (10) foot vertical intervals repeating the steps 4, 5 and 6, until proposed finish subgrade level is reached.
8. Install the subdrain system for the proposed retaining wall at the bottom of the wall.
9. Construct the proposed retaining wall between the piles.

Foundation

The subject property will be mass graded. The surface geometry of the individual lots will be altered. After completion of the final rough grading the finish surface gradients will range from near level lots to lots with a gradient of $2: 1(\mathrm{H}: \mathrm{V})$. Based on this fact this office is providing recommendations for a total of four (4) different foundation systems for the support of the proposed homes.

In short, homes on lots with finish slope gradients of $2: 1(\mathrm{H}: \mathrm{V})$ or steeper will be supported on friction pile/grade-beam foundation system. Homes proposed on lots with slope gradients of gentler than $2: 1(\mathrm{H}: \mathrm{V})$ will be supported on shallow spread or continuous footings or a combination of both. Based on the location of the proposed residence, the foundations may be founded into undisturbed bedrock or into certified engineered fill.

Conventional Footings in Fill - The proposed structures may be supported by continuous footings, spread footings, or a combination of both. Where compacted earth materials are supporting the structural loads, a minimum of three (3) feet below the bottom of the proposed footings, and an area comprised of a minimum of five (5) feet (or equal to the depth of removal, whichever is greater) beyond the footprint of the proposed structure must be over-excavated. The fill placed in over-excavated area must be compacted.

Footings must be founded into certified engineered fill with a minimum relative compaction of ninety (90) percent of its maximum dry density (ASTM 1557). In addition, the bottoms of proposed footings must be below a plane with a slope of one horizontal to one vertical (1:1) projected upward from the bottom edge of adjacent existing footings.

An allowable bearing capacity of up to the maximum value of $2,000 \mathrm{psf}$ may be used for footings twenty-four (24) inches wide and founded twenty-four (24) inches into certified engineered fill.

The allowable bearing value is for dead-plus-live loads and may be increased by thirty (30) percent for momentary wind and seismic loads. The following minimums apply to all footings:

1. Footings must be founded at a minimum depth of twenty-four (24) inches into certified engineered fill.
2. Footings must be reinforced with a minimum of four (4) \#4 bars - two at the top and two at the bottom. The final design of the footings must be provided by a structural engineer in conjunction with this office.
3. A coefficient of friction of 0.25 must be utilized for resisting lateral loads at the contact surface of concrete and foundation soils.
4. Active earth pressure increasing at rates listed in the table provided in the "Equivalent Fluid Pressure Analysis" section of this report must be used in the design of the proposed retaining walls.
5. Passive earth pressure increasing at the maximum rate of 300 psf per foot of depth, to a maximum of $3,000 \mathrm{psf}$, may be used in calculations.
6. A minimum daylight distance of forty (40) feet must be considered for all footings on or near descending slopes.

Conventional Footings in Bedrock - The proposed structures may be supported by continuous footings, spread footings, or a combination of both. Footings must be founded into undisturbed bedrock. In addition, the bottoms of proposed footings must be below a plane with a slope of one horizontal to one vertical (1:1) projected upward from the bottom edge of adjacent existing footings.

An allowable bearing capacity of up to the maximum value of $3,000 \mathrm{psf}$ may be used for footings eighteen (18) inches wide and founded eighteen (18) inches into undisturbed bedrock. The allowable bearing capacity may be increased by twenty (20) percent for every additional foot of width or depth to a maximum value of $5,000 \mathrm{psf}$.

The allowable bearing value is for dead-plus-live loads and may be increased by thirty (30) percent for momentary wind and seismic loads. The following minimums apply to all footings:

1. Footings must be founded at a minimum depth of eighteen (18) inches into undisturbed bedrock.
2. Footings must be reinforced with a minimum of four (4) \#4 bars - two at the top and two at the bottom. The final design of the footings must be provided by a structural engineer in conjunction with this office.
3. A coefficient of friction of 0.4 must be utilized for resisting lateral loads at the contact surface of concrete and foundation soils.
4. Active earth pressure increasing at rates listed in the table provided in the "Equivalent Fluid Pressure Analysis" section of this report must be used in the design of the proposed retaining walls.
5. Passive earth pressure increasing at the maximum rate of 400 psf per foot of depth, to a maximum of $4,000 \mathrm{psf}$, may be used in calculations.
6. A minimum daylight distance of forty (40) feet must be considered for all footings on or near descending slopes.

Soldier Piles in Fill - The proposed structures may be supported on a grade beam/soldier pile combination footing founded into certified engineered fill. The following recommendations should be implemented. An allowable side friction value of 400 psf in compression and 200 psf in tension may be utilized for the portion of the soldier piles that are penetrated into certified engineered fill. The allowable side friction values may be increased by thirty (30) percent for momentary wind and seismic loads. The following minimums apply to the soldier piles:

1. Soldier piles must be founded at a minimum depth of eight (8) feet into certified engineered fill. The actual depth of soldier piles, however, must be determined by the structural engineer in conjunction with this office.
2. Soldier piles must have a minimum diameter of twenty-four (24) inches.
3. The pile excavations must be covered if left overnight.
4. A Registered Grading Deputy Inspector approved by and responsible to this office will be required to provide continuous inspection for the proposed soldier pile drilling and installation.
5. Active earth pressure increasing at rates listed in the table provided in the "Equivalent Fluid Pressure Analysis" section of this report must be used in the design of the proposed retaining walls.
6. Passive earth pressure increasing at the rate of 300 psf per foot of depth, to a maximum of $3,000 \mathrm{psf}$, must be applied to portions of the soldier piles that are embedded a minimum two (2) feet into certified engineered fill.
7. The suggested passive pressure may be doubled for an isolated pile condition (d>2.5D).
8. A minimum daylight distance of forty (40) feet must be considered for all footings on or near descending slopes.

Soldier Piles in Bedrock - The proposed structures may be supported on a grade beam/soldier pile combination footing founded into undisturbed bedrock. The following recommendations should be implemented. An allowable side friction value of 750 psf in compression and 375 psf in tension may be utilized for the portion of the soldier piles that are penetrated into undisturbed bedrock. The allowable side friction values may be increased by thirty (30) percent for momentary wind and seismic loads. The following minimums apply to the soldier piles:

1. Soldier piles must be founded at a minimum depth of eight (8) feet into undisturbed bedrock. The actual depth of soldier piles, however, must be determined by the structural engineer in conjunction with this office.
2. Soldier piles must have a minimum diameter of twenty-four (24) inches.
3. The pile excavations must be covered if left overnight.
4. A Registered Grading Deputy Inspector approved by and responsible to this office will be required to provide continuous inspection for the proposed soldier pile drilling and installation.
5. Active earth pressure increasing at rates listed in the table provided in the "Equivalent Fluid Pressure Analysis" section of this report must be used in the design of the proposed retaining walls.
6. A minimum creep load of 1,000 plf must be applied to the portions of the piles that are in contact with fill or residual soil.
7. Passive earth pressure increasing at the rate of 400 psf per foot of depth, to a maximum of $6,000 \mathrm{psf}$, must be applied to portions of the soldier piles that are embedded a minimum two (2) feet into undisturbed bedrock
8. The suggested passive pressure may be doubled for an isolated pile condition (d>2.5D).
9. A minimum daylight distance of forty (40) feet must be considered for the piles on or near descending slopes, measured horizontally from the surface of competent bedrock.

Subdrain System

The retaining walls must be provided with weep holes or perforated pipe and gravel subdrain to prevent entrapment of water in the backfill. The perforated pipe must consist of four-inch (4") minimum diameter PVC Schedule 40, or ABS SDR-35, with a minimum of sixteen (16) perforations per foot on the bottom one-third of the pipe. Every foot of the pipe should be embedded in three (3) cubic feet of three-quarter-inch (3/4") gravel wrapped in filter fabric (Mirafi 140N or equal). Placement of gravel and filter fabric is also required for weep holes.

In addition, the retaining walls of the residences must be provided with extensive dampproofing. The damp-proofing must be designed by a water-proofing specialist.

Freeboard

A retaining wall surcharged by a sloping condition must be provided with a freeboard for slough protection. A minimum twelve-inch (12") high freeboard must be provided for retaining walls supporting slopes with a gradient of $2: 1(\mathrm{H}: \mathrm{V})$ or gentler, and a minimum twenty-four-inch (24") high freeboard must be provided for retaining walls supporting slopes with a gradient steeper than $2: 1(\mathrm{H}: \mathrm{V})$. An open Vee Channel at the toe of the slope must be constructed behind the wall to carry off the slope water.

Settlement

Maximum total and differential settlements are expected to be less than one-half ($1 / 2$) and one-quarter ($1 / 4$) inches, respectively, provided that our recommendations are followed.

Seismic Hazards

The subject property is shown on the "State of California Seismic Hazard Zones" map presented in Appendix C of this report. All the subject lots are located outside of liquefaction hazard zones. Most of the subject lots are located outside of seismically induced landslide hazard zones. The subject lots situated on the east side of Haverhill Drive and Haverhill Way are located within potential, seismically induced landslide hazard zones. However, our deep-seated slope stability analyses indicate that the slopes within the subject property possess factors of safety against static and seismic stability in excess of minimum Code requirements

Seismic Parameters

The seismic parameters for the design of the proposed structure based on the 2014 Los Angeles Building Code are as follows:

Latitude	$34^{\circ} 06^{\prime} 44^{\prime \prime} \mathrm{N}$
Longitude	$118^{\circ} 13^{\prime} 23^{\prime \prime} \mathrm{W}$
Site Classification	C
Site Coefficient, F_{a}	1.0
Site Coefficient, F_{v}	1.3
Site Spectral Response Acceleration Parameters (g):	
Mapped Acceleration, S $(0.2$ sec. $)$	2.850
Mapped Acceleration, $\mathrm{S}_{1}(1 \mathrm{sec})$.	0.972
Adjusted Maximum Acceleration, $\mathrm{S}_{\mathrm{MS}}(0.2 \mathrm{sec})$.	2.850
Adjusted Maximum Acceleration, $\mathrm{S}_{\mathrm{M} 1}(1 \mathrm{sec})$.	1.264
Design Acceleration, $\mathrm{S}_{\mathrm{DS}}(0.2 \mathrm{sec})$.	1.900
Design Acceleration, $\mathrm{S}_{\mathrm{D} 1}(1 \mathrm{sec})$.	0.843

Conformance with the above listed criteria for seismic design does not constitute any kind of warranty, guarantee, or assurance that significant structural damage or ground failure will not occur if a maximum level earthquake occurs. The primary goal of seismic design is to protect life and limb, and to prevent catastrophic failures, and not to avoid all damage, since such design may be economically prohibitive.

Engineered Fill

All fill earth materials must consist of clean soil that is free of vegetation and other debris. The fill must be placed in six- (6-) to eight- (8-) inch thick lifts at near optimum moisture content and compacted. Particles larger than three (3) inches in diameter must not be allowed in the backfill material. Earth materials must not be imported to the site without prior approval by the soil engineer.

All manufactured fills shall be placed on undisturbed bedrock or approved compacted fill. The proposed new fill must be placed in horizontal layers, and must be benched into competent bedrock or compacted fill.

All engineered fill must be compacted to a minimum of ninety (90) percent of its maximum dry density (ASTM D 1557) within forty (40) feet below finish grade and to a minimum of ninety-three (93) percent deeper than forty (40) feet below finish grade.
Where cohesionless soil having less than fifteen (15) percent finer than 0.005 millimeter is used for fill, it must be compacted to a minimum of ninety-five (95) percent of its maximum dry density. For slopes to be constructed with an exposed slope surface, compaction at the exposed surface of the slope shall be obtained either by overfilling and cutting back the slope surface until the compacted inner core is exposed, or by compacting the outer horizontal ten (10) feet of the slope at least ninety-two (92) percent of its maximum dry density. Neither jetting nor water tamping are permitted.

Heavy construction equipment must be maintained at a minimum distance of three (3) feet from the existing structures. Hand-operated compaction equipment must be used to compact the backfill soils within this 3-foot-wide zone.

Concrete Slabs

The subgrade for the proposed concrete slabs-on-grade must consist of undisturbed bedrock or a minimum two (2) foot thick layer of certified compacted fill. The competent subgrade must be covered with four (4) inches of crushed miscellaneous aggregate (CMA) and compacted to ninety-five percent (95%) of its maximum dry density (ASTM D 1557). The CMA must be covered with one (1) inch of sand. The sand must be covered by a ten (10)-mil vapor barrier. The vapor barrier must be installed so that the edges of the sheet overlap at least twelve (12) inches onto any adjacent sheet. The vapor barrier must be covered with one (1) inch of sand. The sand must be covered with four (4) inches of nonexpansive hard rock concrete mix (3/4" max. rock size). The reinforcement must be a minimum of \#4 bars at sixteen (16) inches on center in both directions. The reinforcement must be placed at the mid-depth of the concrete slab. The slab must be covered with a vapor barrier for at least two (2) days to slow the curing time, reduce the shrinkage crack potential and be self-watering.

The consulting structural-engineer-of-record may decide to increase the slab thickness according to the proposed traffic loads. In addition, at locations where removal and recompaction of existing unsuitable earth materials is not feasible, the floor slabs must be designed as structural slabs, deriving their support from the foundations of the residence.

Driveway

The subgrade for the proposed driveway must consist of undisturbed bedrock or a minimum two (2) foot thick layer of certified compacted fill. The competent subgrade must be covered with four (4) inches of crushed miscellaneous aggregate (CMA) and compacted to ninety-five percent (95\%) of its maximum dry density (ASTM D1557). The CMA must be covered by asphalt concrete, concrete slab, stone pavers or equal.

Pipe Bedding and Trench Backfill

The pipe bedding must consist of sand or similar granular material having a minimum sand equivalent value of thirty (30). The sand must be placed in a zone that extends a minimum of six (6) inches below and twelve (12) inches above the pipe for the full trench width. The bedding material must be compacted. The trench backfill above the pipe bedding may consist of approved, on-site or imported soils, and it must be compacted. Where utility trenches are parallel to the footings, the bottom of the trench must be located above a plane with a slope of $1: 1$, projected downward from the adjacent bottom edge of the footing.

Site Drainage

Drainage devices such as sloping sidewalks and area drains must be provided around the building to collect and direct all water away from the structure. Neither rain nor excess irrigation water should be allowed to collect or pond against foundations. The collected water must be directed to the proper drainage system via non-erosive devices. The actual site drainage, however, must be designed by the consulting civil engineer-of-record.

DESIGN REVIEW

We suggest that the geotechnical and geological aspects of the project be reviewed by this firm during the design process. The scope of our services may include assistance to the design team by providing specific recommendations for special cases, reviewing the foundation design, reviewing the geotechnical and geological portions of the project for possible cost savings through alternative approaches, and evaluating the overall applicability of our recommendations. Additional site-specific explorations may also be considered if significant foundation modifications are required using the above recommendations.

The owner should anticipate that both the geologist and soils engineer must review and approve the detailed plans prior to issuance of any permits. This approval shall be by signature on the plans which clearly indicates that the geologist and soils engineer have reviewed the plans prepared by the design engineer and that the plans include the recommendations contained in their reports.

INSPECTION

All excavations must be inspected and approved. All fill placed for engineering purposes must be tested for compaction and moisture content and certified. The subdrain system must be observed and approved. Inspection of excavations and subdrain system may also be required by the appropriate reviewing governmental agencies.

It is recommended that SAS be retained to verify compliance with the recommendations made in this report, to ensure compliance with the design concepts, specifications, and recommendations, and to allow design changes in the event that exposed subsurface conditions differ from those anticipated herein.

A joint meeting among the parties involved in this project is recommended prior to the start of groundbreaking to discuss specific procedures and scheduling.

Inspections performed by SAS are for verification purposes only and shall under no circumstance relieve other parties involved in the design and construction from their obligation to perform work in accordance with the approved plans.

In the event that the recommendations contained herein are interpreted by others, SAS will not accept responsibility for such interpretations.

INVESTIGATION LIMITATIONS

The conclusions and recommendations presented in this report are based on the findings and observations in the field and the results of laboratory tests performed on representative samples. The soils encountered in the test pits are believed to be representative of the total area; however, soil characteristics can vary throughout the site. SAS should be notified if subsurface conditions are encountered which differ from those described in this report.

This report has not been prepared for use by parties or projects other than those named and described above. It may not contain sufficient information for other parties or other purposes. The conclusions and recommendations presented in this report are professional opinions. These opinions have been derived in accordance with current standards of geotechnical engineering and engineering geology practice, field observations and laboratory test results. No other warranty is expressed or implied.

This report should be reviewed and updated after a period of one year or if the project concept changes from that described herein.

We appreciate the opportunity to be of service to you. If you have any questions, please call our office.

Sincerely,

Janan Anayi, Ph.D.
Project Manager

SAS/TH:ak/4stol28a.doc
Appendices

REFERENCES:

1. California Division of Mines and Geology, 1998, Seismic Hazard Evaluation for the Los Angeles 7.5 Minute Quadrangle, Los Angeles County, California; OFR 9820
2. California Division of Mines and Geology, 1999, Seismic Hazard Zones Map for the Los Angeles Quadrangle, Los Angeles County, California; Scale 1:24,000
3. California Division of Mines and Geology, 1977, Official Map of Special Studies Zones, Los Angeles Quadrangle; Scale 1:24,000
4. Dibblee, T.W., 1989, Geologic Map of the Los Angeles Quadrangle, Los Angeles County, California. Dibblee Geological Foundation, Santa Barbara, California; Map DF-22; Scale 1:24,000
5. Lamar, D.L., 1970, Geology of the Elysian Park - Repetto Hills Area, Los Angeles County, California Division of Mines and Geology, Special Report 101

APPENDIX A

APPENDIX B

T = Tube Sample

[^0]| Sample
 Number | $\begin{gathered} \gamma_{\mathrm{d}} \\ (\mathrm{pcf}) \\ \hline \end{gathered}$ | Moisture (\%) | N | $\begin{aligned} & \text { y } \\ & 0 \\ & \hline \end{aligned}$ | Depth
 (ft) | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 80 | 5 | | CL | | Residual Soil/Colluvium: Brown, dry to 6" than moist, very porous, loose, silty clay, roots up to 1.5 " in diameter |
| | 115 | 4 | | $\begin{aligned} & \text { 解 } \\ & \text { © } \\ & 0 \end{aligned}$ | | Bedrock: Gray, highly fractured siltstone with sandstone interbeds, shaly in part
 B: N46W, 59SW |
| | | | | | | Excavation Terminated at Depth of 10 Feet Water Seepage Was Not Encountered |

[^1]

[^2]

[^3]

[^4]

[^5]

[^6]

[^7]

[^8]

[^9]

[^10]

[^11]

[^12]

[^13]

[^14]

[^15]

[^16]

[^17]| Sample
 Number | $\underset{(\mathrm{pcf})}{\gamma_{\mathrm{d}}}$ | Moisture
 (\%) | N | 答 | Depth
 (ft) | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { 羅 }}{\mathrm{T}-1}$ | 119 | 3 | | | | Residual soil: Dark brown, silty clay, dry to moist, very loose to loose, porous, many roots blocky fracturing, silty clay. Damp to moist. Stiff. Porous, many
 Bedrock: Sandstone with siltstone interbeds, then siltstone below
 B: N35W, 59SW
 B: N38W, 61SW |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

[^18]

[^19]

[^20]

[^21]

[^22]

[^23]| Sample
 Number | $\begin{gathered} \gamma_{\mathrm{d}} \\ (\mathrm{pcf}) \end{gathered}$ | Moisture (\%) | N | 気 | Depth
 （ft） | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 91 | 7 | | | | Native：dark brown silty clay，damp，loose， crumbly，porous |
| | 128 | | | | | Bedrock：white weathering diatomaceous siltstone，shaly，moderately fractured
 B：N61W，57SW
 B：N63W，56SW |
| | | | | | | Excavation Terminated at Depth of 4 Feet Water Seepage Was Not Encountered |

[^24]

[^25]

[^26]

[^27]

[^28]

G= Grab Sample

[^29]

[^30]

G= Grab Sample

G= Grab Sample

[^31]

[^32]

G= Grab Sample

[^33]

Symbol	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	TP-1	T-2	4	Bedrock	590	34	1
-	TP-3	T-2	9	Bedrock	730	35	2
\square	TP-5	T-2	8	Bedrock	800	35	3
-	TP-7	T-2	2	Bedrock	570	33	4

Remarks:
1 - BEDROCK; Saturated Moisture Content: 17%, Dry Density: 111 pcf; Ultimate
2 - BEDROCK; Saturated Moisture Content: 16\%, Dry Density: 115 pcf; Ultimate
3 - BEDROCK; Saturated Moisture Content: 14\%, Dry Density: 118 pcf; Ultimate
4 - BEDROCK; Saturated Moisture Content: 20\%, Dry Density: 105 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	TP-7	T-2	12	Bedrock	630	34	1
$\boldsymbol{\square}$	TP-9	T-2	16	Bedrock	660	35	2
$\mathbf{\Delta}$	TP-10	T-2	7	Bedrock	540	33	3

Remarks:
1 - BEDROCK; Saturated Moisture Content: 16\%, Dry Density: 114 pcf; Ultimate
2 - BEDROCK; Saturated Moisture Content: 18\%, Dry Density: 109 pcf; Ultimate
3 - BEDROCK; Saturated Moisture Content: 19\%, Dry Density: 108 pcf; Ultimate; Resheared
4 - BEDROCK; Saturated Moisture Content: 18\%, Dry Density: 110 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	$\mathrm{TP}-2$	$\mathrm{~T}-2$	6	CL	440	25	1
-	$\mathrm{TP}-6$	$\mathrm{~T}-1$	2	CL	360	20	2
$\boldsymbol{\square}$	$\mathrm{TP}-8$	$\mathrm{~T}-1$	2	CL	410	21	3
	$\mathrm{TP}-12$	$\mathrm{~T}-1$	2	CL	390	20	4

Remarks:

> 1 - RESIDUAL; Saturated Moisture Content: 30%, Dry Density: 89 pcf; Ultimate
> 2 - RESIDUAL; Saturated Moisture Content: 37%, Dry Density: 82 pcf; Ultimate
> 3 - RESIDUAL; Saturated Moisture Content: 36%, Dry Density: 83 pcf; Ultimate
> 4 - RESIDUAL; Saturated Moisture Content: 30%, Dry Density: 90 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	$\mathrm{TP}-14$	$\mathrm{~T}-3$	15.5	Bedrock	570	34	1
$\boldsymbol{\square}$	$\mathrm{TP}-15$	$\mathrm{~T}-2$	7	Bedrock	600	31	2
$\mathbf{\square}$	$\mathrm{TP}-17$	$\mathrm{~T}-4$	16	Bedrock	630	37	3

Remarks:
1 - BEDROCK; Saturated Moisture Content: 20\%, Dry Density: 106 pcf; Ultimate
2 - RESIDUAL SOIL; Saturated Moisture Content: 29\%, Dry Density: 92 pcf; Ultimate
3 - RESIDUAL SOIL; Saturated Moisture Content: 43\%, Dry Density: 75 pcf; Ultimate
4 - BEDROCK; Saturated Moisture Content: 19\%, Dry Density: 107 pcf; Ultimate

Remarks:
1 - BEDROCK; Saturated Moisture Content: 17\%, Dry Density: 112 pcf; Ultimate
2 - RESIDUAL SOIL; Saturated Moisture Content: 29\%, Dry Density: 92 pcf; Ultimate RESIDUAL SOIL; Saturated Moisture Content: 43\%, Dry Density: 75 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	$\mathrm{TP}-13$	$\mathrm{~T}-1$	2	CL	410	23	1
\bullet	$\mathrm{TP}-14$	$\mathrm{~T}-2$	8	CL	450	22	2
\square	$\mathrm{TP}-15$	$\mathrm{~T}-1$	2	CL	350	26	3
$\mathbf{\Delta}$	$\mathrm{TP}-16$	$\mathrm{~T}-2$	17	CL	280	31	4

Remarks:
1 - RESIDUAL SOIL; Saturated Moisture Content: 36%, Dry Density: 83 pcf; Ultimate
2 - RESIDUAL SOIL; Saturated Moisture Content: 29\%, Dry Density: 92 pcf; Ultimate
3 - RESIDUAL SOIL; Saturated Moisture Content: 43\%, Dry Density: 75 pcf; Ultimate
4 - RESIDUAL SOIL; Saturated Moisture Content: 33%, Dry Density: 86 pcf; Ultimate

Remarks:
1 - RESIDUAL SOIL; Saturated Moisture Content: 33%, Dry Density: 87 pcf; Ultimate
2 - RESIDUAL SOIL; Saturated Moisture Content: 29\%, Dry Density: 92 pcf; Ultimate
3 - RESIDUAL SOIL; Saturated Moisture Content: 43\%, Dry Density: 75 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	$\mathrm{TP}-17$	$\mathrm{~T}-1$	2	CL	310	26	1
-	$\mathrm{TP}-19$	$\mathrm{~T}-1$	2	CL	340	25	2
\square	$\mathrm{TP}-18$	$\mathrm{~T}-1$	1	CL	400	21	3

Remarks:
1 - FILL; Saturated Moisture Content: 42\%, Dry Density: 76 pcf; Ultimate
2 - RESIDUAL SOIL; Saturated Moisture Content: 29\%, Dry Density: 92 pcf; Ultimate
3 - RESIDUAL SOIL; Saturated Moisture Content: 43\%, Dry Density: 75 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
\mathbf{u}	TP-21	G-1	4.5	Bedrock	920	31	1
$\boldsymbol{\square}$	TP-24	G-1	6	Bedrock	780	35	2
$\mathbf{\Delta}$	TP-27	G-1	3	Bedrock	580	36	3

Remarks:
1 - BEDROCK; Saturated Moisture Content: 11\%, Dry Density: 128 pcf; Ultimate
2 - BEDROCK; Saturated Moisture Content: 10\%, Dry Density: 129 pcf; Ultimate
3 - BEDROCK; Saturated Moisture Content: 10\%, Dry Density: 130 pcf; Resheared
4 - BEDROCK; Saturated Moisture Content: 10\%, Dry Density: 130 pcf; Ultimate

Remarks:
1 - FILL; Saturated Moisture Content: 34\%, Dry Density: 87 pcf; Ultimate
2 - RESIDUAL SOIL; Saturated Moisture Content: 30\%, Dry Density: 92 pcf; Ultimate
3 - RESIDUAL SOIL; Saturated Moisture Content: 34\%, Dry Density: 88 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	$\mathrm{TP}-30$	$\mathrm{~T}-1$	2	CL	410	22	1

Remarks:
1 - RESIDUAL SOIL; Saturated Moisture Content: 30\%, Dry Density: 93 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	TP-31	G-1	5.5	Bedrock	840	36	1
-	TP-33	G-1	6	Bedrock	780	36	2
$\mathbf{\square}$	TP-35	G-1	5	Bedrock	640	28	3

Remarks:
1 - BEDROCK; Saturated Moisture Content: 10\%, Dry Density: 129 pcf; Ultimate
2 - BEDROCK; Saturated Moisture Content: 11%, Dry Density: 127 pcf; Ultimate
3 - BEDROCK; Saturated Moisture Content: 10\%, Dry Density: 129 pcf; Resheared
4 - BEDROCK; Saturated Moisture Content: 10\%, Dry Density: 131 pcf; Ultimate

Remarks:
1 - RESIDUAL SOIL; Saturated Moisture Content: 30\%, Dry Density: 92 pcf; Ultimate
2 - FILL; Saturated Moisture Content: 29\%, Dry Density: 93 pcf; Ultimate
3 - RESIDUAL SOIL; Saturated Moisture Content: 32\%, Dry Density: 90 pcf; Ultimate

	Test Location	Sample Number	Depth (ft)	Soil Type	Cohesion (psf)	Friction Angle (deg)	Remarks
u	$\mathrm{TP}-37$	$\mathrm{~T}-1$	3	CL	400	24	1
0	$\mathrm{TP}-39$	$\mathrm{~T}-1$	3	CL	420	23	2

Remarks:
1 - RESIDUAL SOIL; Saturated Moisture Content: 32%, Dry Density: 90 pcf; Ultimate
2 - RESIDUAL SOIL; Saturated Moisture Content: 30\%, Dry Density: 92 pcf; Ultimate

APPENDIX C

MAP EXPLANATION
Zones of Required Investigation:

Liquefaction

Aress where historic ofcuirence of liquefaction, or local goological,
geotechrical and groundwater conditions indicate a potential for permanent ground displacements such that mitigation as defined in Public Resources Code Section 2693 (c) would be required.
Earthquake-Induced Landslides
Areas where previous occurrence of landslide mowement, or local topographic, geological, geotechnical and subsurface water conditions indicate a potential for permanent ground displacernents such that mitigation ac definent in Puhlic Repources Code Section 26p3(c) wauld be required.

APPENDIX D

MONTEREY FORMATION (La Vida and Soquel Members of Puente Formation of Schoellhamer, et al., 1965; Puente Formation of Lamar, 1970; Weber, 1980) marine; middle(?) and late Miocene age Tmsh white-weathering, thin bedded, platy, siliceous shate, locally porcelaneous and silty; Mohnian Stage
Tmss tan to light gray semi-friable arkosic sandstone; incluces some interbedded silty shale Tmsl gray, micaceous silty shale and siltstone; indudes some semi-siliceous to siliceous shale and thin sandstone beds; Mohnian and Luisian S:ages (includes upper part of Topanga Formation of Lamar. 1970)

GEOLOGIC MAP OF THE LOS ANGELES QUADRANGLE

LOS ANGELES COUNTY, CALIFORNIA
THOMAS W. DIBBLEE, JR., 1989
Dibblee Foundation Map \#DF-22

APPENDIX E
(1) SOIL: $\mathrm{C}=290 \mathrm{psf}$, $\mathrm{phi}=28 \mathrm{deg}$
(2) BEDROCK: $\mathrm{C}=570 \mathrm{psf}, \mathrm{phi}=33 \mathrm{deg}$

FIGURE E-1

```
\begin{tabular}{ll} 
Analysis Run Date: & \(3 / 20 / 2015\) \\
Time of Run: & \(9: 09 \mathrm{PM}\) \\
Run By: & Username \\
Input Data Filename: & C:4sto8-1s.in \\
Output Filename: & C:4sto8-1s.oUT \\
Unit System: & English \\
& \\
Plotted Output Filename: & C:4sto8-1s.PLT
\end{tabular}
PROBLEM DESCRIPTION: Brilliant Dr Slope Stability Analysis Section A-A (Entire Slope; Static)
```

BOUNDARY COORDINATES

10 Top Boundaries
19 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Below
				Type	

1

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. $\begin{array}{llllllll}1 & 120.0 & 120.0 & 290.0 & 28.0 & 0.00 & 0.0 & 1\end{array}$ $\begin{array}{llllllll}2 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1\end{array}$

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

```
    1 0 0 ~ S u r f a c e ( s ) ~ I n i t i a t e ( s ) ~ F r o m ~ E a c h ~ O f ~ 1 4 ~ P o i n t s ~ E q u a l l y ~ S p a c e d
Along The Ground Surface Between X = 116.00(ft)
                        and }X=218.00(ft
Each Surface Terminates Between X = 280.00(ft)
                        and }X=340.00(ft
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
10.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.
* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1400
Statistical Data On All Valid FS Values:
    FS Max = 3.891 FS Min = 1.697 FS Ave = 2.106
    Standard Deviation = 0.253 Coefficient of Variation = 12.00
```

Failure Surface Specified By 17 Coordinate Points

Factor of Safety
*** 1.697 ***

Failure Surface Specified By 16 Coordinate Points

```
    Point X-Surf Y-Surf
    No. (ft) (ft)
    202.31 70.25
    212.29 70.86
    222.20 72.19
    231.99 74.23
    241.60 76.98
    251.00 80.41
    260.12 84.52
    268.91 89.27
    277.35 94.65
    285.37 100.62
    292.94 107.15
    300.01 114.22
    306.56 121.78
    312.54 129.79
    317.93 138.21
    319.98 142.00
Circle Center At X = 198.94 ; Y = 208.14 ; and Radius = 137.94
    Factor of Safety
*** 1.701 ***
```

Failure Surface Specified By 16 Coordinate Points

```
    Point X-Surf Y-Surf
    No. (ft) (ft)
                            194.46 68.25
        204.46 68.17
        214.44 68.89
        224.32 70.41
        234.05 72.72
        243.56 75.80
        252.80 79.63
        261.70 84.19
        270.21 89.45
        278.26 95.37
        285.82 101.92
        292.82 109.06
        299.24 116.73
        305.01 124.89
        310.12 133.49
        314.28 142.00
Circle Center At X = 200.46 ; Y = 192.72 ; and Radius = 124.61
    Factor of Safety
*** 1.704 ***
```

Failure Surface Specified By 17 Coordinate Points

Point No.	$\begin{gathered} \text { X-Surf } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ \text { (ft) } \end{gathered}$	
1	194.46	68.25	
2	204.45	68.75	
3	214.38	69.91	
4	224.22	71.70	
5	233.92	74.13	
6	243.44	77.18	
7	252.75	80.84	
8	261.80	85.10	
9	270.55	89.93	
10	278.98	95.32	
11	287.03	101.25	
12	294.69	107.68	
13	301.91	114.60	
14	308.67	121.97	
15	314.94	129.76	
16	320.69	137.94	
17	323.16	142.00	

Factor of Safety
*** 1.704 ***

Failure Surface Specified By 17 Coordinate Points

Point No.	$\begin{gathered} \text { X-Surf } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ (\mathrm{ft}) \end{gathered}$	
1	186.62	66.42	
2	196.61	66.09	
3	206.60	66.51	
4	216.53	67.70	
5	226.34	69.65	
6	235.97	72.34	
7	245.37	75.76	
8	254.48	79.88	
9	263.24	84.69	
10	271.62	90.16	
11	279.55	96.25	
12	286.99	102.93	
13	293.90	110.15	
14	300.24	117.89	
15	305.97	126.08	
16	311.06	134.70	
17	314.65	142.00	

Factor of Safety
*** 1.705 ***

Failure Surface Specified By 17 Coordinate Points

Factor of Safety
*** 1.706 ***

Failure Surface Specified By 16 Coordinate Points

```
    Point X-Surf Y-Surf
    No. (ft) (ft)
    202.31 70.25
    212.29 70.81
    222.21 72.07
    232.02 74.04
    241.65 76.71
    251.08 80.05
    260.24 84.05
    269.10 88.70
    277.60 93.96
    285.71 99.82
    293.38 106.24
    300.57 113.18
    307.25 120.62
    313.38 128.52
    318.94 136.84
    321.88 142.00
Circle Center At X = 199.55 ; Y = 210.35 ; and Radius = 140.13
    Factor of Safety
*** 1.707 ***
```

Failure Surface Specified By 16 Coordinate Points

```
    Point X-Surf Y-Surf
    No. (ft) (ft)
                            194.46 68.25
        204.44 68.87
        214.35 70.25
        224.12 72.38
        233.70 75.25
        243.03 78.84
        252.07 83.12
        260.75 88.09
        269.03 93.70
        276.85 99.92
        284.18 106.72
        290.98 114.06
        297.19 121.89
        302.79 130.18
        307.75 138.87
        309.23 142.00
Circle Center At X = 191.36 ; Y = 199.24 ; and Radius = 131.03
    Factor of Safety
*** 1.708 ***
```

Failure Surface Specified By 17 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	194.46	68.25
2	204.46	67.93
3	214.44	68.44
4	224.36	69.75
5	234.13	71.87
6	243.70	74.77
7	253.00	78.44
8	261.97	82.86
9	270.55	87.99
10	278.69	93.81
11	286.33	100.27
12	293.41	107.32
13	299.90	114.94
14	305.74	123.05
15	310.91	131.61
16	315.36	140.56
17	315.93	142.00

Factor of Safety
*** 1.710 ***

```
Failure Surface Specified By 18 Coordinate Points
```

```
    Point X-Surf Y-Surf
    No. (ft) (ft)
            1 186.62 66.42
            196.62 66.40
            206.60 67.04
            216.51 68.32
            226.33 70.25
            235.99 72.81
            245.47 76.00
            254.72 79.80
            263.70 84.19
            272.38 89.16
            280.71 94.69
            288.67 100.75
            296.21 107.31
            303.31 114.35
            309.94 121.84
            316.06 129.75
            321.66 138.04
            323.97 142.00
Circle Center At X = 191.97 ; Y = 219.30 ; and Radius = 152.97
```

 Factor of Safety
 *** 1.711 ***
**** END OF GSTABL7 OUTPUT ****

Brilliant Dr Slope Stability Analysis Section A-A (Entire Slope; Static)


```
\begin{tabular}{ll} 
Analysis Run Date: & \(3 / 20 / 2015\) \\
Time of Run: & \(9: 10 \mathrm{PM}\) \\
Run By: & Username \\
Input Data Filename: & C:4sto8-1p.in \\
Output Filename: & C:4sto8-1p.OUT \\
Unit System: & English \\
& \\
Plotted Output Filename: & C:4sto8-1p.PLT
\end{tabular}
PROBLEM DESCRIPTION: Brilliant Dr Slope Stability Analysis Section A-A (Entire Slope; PseudoStatic)
```

BOUNDARY COORDINATES

10 Top Boundaries
19 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Below
				Type	

```
Default Y-Origin = 0.00(ft)
```

ISOTROPIC SOIL PARAMETERS
2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
$\begin{array}{llllllll}1 & 120.0 & 120.0 & 290.0 & 28.0 & 0.00 & 0.0 & 1\end{array}$
$\begin{array}{llllllll}2 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1\end{array}$
A Horizontal Earthquake Loading Coefficient
Of0. 320 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of0.000 Has Been Assigned
Cavitation Pressure $=0.0(\mathrm{psf})$

```
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1400 Trial Surfaces Have Been Generated.
    100 Surface(s) Initiate(s) From Each Of 14 Points Equally Spaced
Along The Ground Surface Between X = 116.00(ft)
    and X = 218.00(ft)
Each Surface Terminates Between X = 280.00(ft)
    and X = 370.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
10.00(ft) Line Segments Define Each Trial Failure Surface.
```

```
Following Are Displayed The Ten Most Critical Of The Trial
```

Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1400
Statistical Data On All Valid FS Values:
FS Max = 2.470 FS Min = 1.012 FS Ave = 1.380
Standard Deviation = 0.246 Coefficient of Variation = 17.79

```

Failure Surface Specified By 16 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 202.31 70.25
 212.11 72.21
 221.81 74.66
 231.37 77.58
 240.78 80.98
 250.01 84.83
 259.04 89.13
 267.84 93.87
 276.40 99.03
 284.70 104.62
 292.71 110.60
 300.42 116.98
 307.80 123.72
 314.84 130.82
 321.52 138.26
 324.56 142.00
 Circle Center At X = 167.48 ; Y = 269.61 ; and Radius = 202.39
Factor of Safety
*** 1.012 ***

```

Failure Surface Specified By 23 Coordinate Points
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Point \\
No.
\end{tabular} & \[
\begin{gathered}
X-S u r f \\
(f t)
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] \\
\hline 1 & 147.39 & 53.89 \\
\hline 2 & 157.39 & 53.91 \\
\hline 3 & 167.38 & 54.35 \\
\hline 4 & 177.34 & 55.20 \\
\hline 5 & 187.26 & 56.46 \\
\hline 6 & 197.12 & 58.13 \\
\hline 7 & 206.90 & 60.21 \\
\hline 8 & 216.59 & 62.69 \\
\hline 9 & 226.17 & 65.56 \\
\hline 10 & 235.62 & 68.84 \\
\hline 11 & 244.92 & 72.50 \\
\hline 12 & 254.07 & 76.54 \\
\hline 13 & 263.04 & 80.95 \\
\hline 14 & 271.82 & 85.74 \\
\hline 15 & 280.40 & 90.88 \\
\hline 16 & 288.76 & 96.37 \\
\hline 17 & 296.88 & 102.21 \\
\hline 18 & 304.75 & 108.37 \\
\hline 19 & 312.36 & 114.85 \\
\hline 20 & 319.70 & 121.65 \\
\hline 21 & 326.75 & 128.74 \\
\hline 22 & 333.50 & 136.12 \\
\hline 23 & 338.45 & 142.00 \\
\hline
\end{tabular}

Factor of Safety
*** 1.021 ***

Failure Surface Specified By 23 Coordinate Points
\begin{tabular}{|c|c|c|}
\hline Point No. & \[
\begin{gathered}
\text { X-Surf } \\
(\mathrm{ft})
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] \\
\hline 1 & 147.39 & 53.89 \\
\hline 2 & 157.38 & 54.02 \\
\hline 3 & 167.37 & 54.56 \\
\hline 4 & 177.32 & 55.51 \\
\hline 5 & 187.23 & 56.86 \\
\hline 6 & 197.08 & 58.61 \\
\hline 7 & 206.84 & 60.77 \\
\hline 8 & 216.51 & 63.33 \\
\hline 9 & 226.07 & 66.27 \\
\hline 10 & 235.49 & 69.61 \\
\hline 11 & 244.78 & 73.32 \\
\hline 12 & 253.90 & 77.42 \\
\hline 13 & 262.85 & 81.88 \\
\hline 14 & 271.61 & 86.70 \\
\hline 15 & 280.17 & 91.88 \\
\hline 16 & 288.50 & 97.40 \\
\hline 17 & 296.61 & 103.26 \\
\hline 18 & 304.47 & 109.44 \\
\hline 19 & 312.07 & 115.94 \\
\hline 20 & 319.39 & 122.75 \\
\hline 21 & 326.44 & 129.85 \\
\hline 22 & 333.19 & 137.23 \\
\hline 23 & 337.21 & 142.00 \\
\hline
\end{tabular}

Factor of Safety
*** 1.021 ***
```

Failure Surface Specified By 21 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 163.08 60.95
 173.07 60.65
 183.07 60.88
 193.04 61.63
 202.96 62.89
 212.80 64.68
 222.53 66.98
 232.13 69.78
 241.57 73.08
 250.83 76.87
 259.87 81.13
 268.68 85.87
 277.23 91.06
 285.49 96.68
 293.45 102.74
 301.09 109.20
 308.37 116.05
 315.29 123.27
 321.82 130.84
 327.95 138.75
 330.21 142.00
 Circle Center At X = 173.75 ; Y = 251.92 ; and Radius = 191.27
Factor of Safety
*** 1.022 ***

```

Failure Surface Specified By 20 Coordinate Points
```

 Point
 1 170.92 62.77
 180.91 63.19
 190.87 64.10
 200.78 65.50
 210.60 67.37
 220.32 69.72
 229.91 72.55
 239.36 75.83
 248.63 79.58
 257.71 83.77
 266.57 88.40
 275.20 93.46
 283.56 98.93
 291.66 104.81
 299.45 111.07
 306.93 117.71
 314.08 124.70
 320.88 132.03
 327.31 139.69
 329.07 142.00
 Circle Center At X = 167.35 ; Y = 267.36 ; and Radius = 204.61
Factor of Safety
*** 1.024 ***

```
```

Failure Surface Specified By 24 Coordinate Points

```
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Point \\
No.
\end{tabular} & \[
\begin{gathered}
\text { X-Surf } \\
\text { (ft) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] \\
\hline 1 & 139.54 & 49.88 \\
\hline 2 & 149.54 & 50.16 \\
\hline 3 & 159.51 & 50.82 \\
\hline 4 & 169.46 & 51.87 \\
\hline 5 & 179.35 & 53.31 \\
\hline 6 & 189.19 & 55.14 \\
\hline 7 & 198.94 & 57.34 \\
\hline 8 & 208.60 & 59.92 \\
\hline 9 & 218.15 & 62.88 \\
\hline 10 & 227.58 & 66.20 \\
\hline 11 & 236.88 & 69.89 \\
\hline 12 & 246.02 & 73.94 \\
\hline 13 & 255.00 & 78.34 \\
\hline 14 & 263.80 & 83.09 \\
\hline 15 & 272.41 & 88.18 \\
\hline 16 & 280.82 & 93.60 \\
\hline 17 & 289.01 & 99.34 \\
\hline 18 & 296.97 & 105.39 \\
\hline 19 & 304.68 & 111.75 \\
\hline 20 & 312.15 & 118.41 \\
\hline 21 & 319.34 & 125.35 \\
\hline 22 & 326.27 & 132.56 \\
\hline 23 & 332.91 & 140.04 \\
\hline 24 & 334.51 & 142.00 \\
\hline
\end{tabular}
    Factor of Safety
*** 1.024 ***
```

Failure Surface Specified By 24 Coordinate Points

```
\begin{tabular}{|c|c|c|}
\hline Point No. & \[
\begin{gathered}
X-\operatorname{Surf} \\
(f t)
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] \\
\hline 1 & 147.39 & 53.89 \\
\hline 2 & 157.38 & 53.44 \\
\hline 3 & 167.38 & 53.45 \\
\hline 4 & 177.36 & 53.91 \\
\hline 5 & 187.32 & 54.82 \\
\hline 6 & 197.23 & 56.18 \\
\hline 7 & 207.07 & 57.99 \\
\hline 8 & 216.81 & 60.24 \\
\hline 9 & 226.44 & 62.92 \\
\hline 10 & 235.94 & 66.04 \\
\hline 11 & 245.29 & 69.59 \\
\hline 12 & 254.47 & 73.56 \\
\hline 13 & 263.46 & 77.93 \\
\hline 14 & 272.25 & 82.71 \\
\hline 15 & 280.81 & 87.88 \\
\hline 16 & 289.12 & 93.43 \\
\hline 17 & 297.18 & 99.36 \\
\hline 18 & 304.96 & 105.64 \\
\hline 19 & 312.45 & 112.26 \\
\hline 20 & 319.64 & 119.22 \\
\hline 21 & 326.50 & 126.50 \\
\hline 22 & 333.02 & 134.07 \\
\hline 23 & 339.20 & 141.94 \\
\hline 24 & 339.24 & 142.00 \\
\hline
\end{tabular}
    Factor of Safety
*** 1.024 ***
```

Failure Surface Specified By 19 Coordinate Points

```
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Point \\
No.
\end{tabular} & \[
\begin{gathered}
\text { X-Surf } \\
(\mathrm{ft})
\end{gathered}
\] & \[
\begin{gathered}
Y-S u r f \\
(f t)
\end{gathered}
\] \\
\hline 1 & 186.62 & 66.42 \\
\hline 2 & 196.61 & 66.77 \\
\hline 3 & 206.57 & 67.61 \\
\hline 4 & 216.48 & 68.96 \\
\hline 5 & 226.31 & 70.80 \\
\hline 6 & 236.03 & 73.14 \\
\hline 7 & 245.63 & 75.96 \\
\hline 8 & 255.07 & 79.27 \\
\hline 9 & 264.33 & 83.04 \\
\hline 10 & 273.39 & 87.27 \\
\hline 11 & 282.22 & 91.96 \\
\hline 12 & 290.81 & 97.08 \\
\hline 13 & 299.13 & 102.63 \\
\hline 14 & 307.16 & 108.59 \\
\hline 15 & 314.88 & 114.95 \\
\hline 16 & 322.27 & 121.68 \\
\hline 17 & 329.31 & 128.78 \\
\hline 18 & 335.98 & 136.23 \\
\hline 19 & 340.65 & 142.00 \\
\hline
\end{tabular}
    Factor of Safety
*** 1.024 ***
```

Failure Surface Specified By 22 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 163.08 60.95
 173.08 60.91
 183.07 61.34
 193.03 62.22
 202.94 63.56
 212.78 65.35
 222.52 67.59
 232.15 70.28
 241.65 73.41
 251.00 76.97
 260.17 80.95
 269.15 85.36
 277.92 90.17
 286.45 95.37
 294.74 100.97
 302.77 106.94
 310.51 113.27
 317.95 119.95
 325.08 126.96
 331.88 134.29
 338.33 141.93
 338.38 142.00
 Circle Center At X = 168.84 ; Y = 278.60 ; and Radius = 217.73
Factor of Safety

```
```

Failure Surface Specified By 22 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 163.08 60.95
 173.06 60.28
 183.05 60.15
 193.05 60.55
 203.00 61.48
 212.90 62.94
 222.70 64.92
 232.38 67.41
 241.92 70.42
 251.28 73.94
 260.44 77.94
 269.38 82.42
 278.07 87.38
 286.48 92.79
 294.59 98.63
 302.38 104.90
 309.83 111.58
 316.91 118.64
 323.61 126.07
 329.90 133.84
 335.77 141.94
 335.81 142.00
 Circle Center At X = 180.55 ; Y = 248.29 ; and Radius = 188.15
Factor of Safety
**** END OF GSTABL7 OUTPUT ****

```

Brilliant Dr Slope Stability Analysis Section A-A (Entire Slope; PseudoStatic)

(1) SOIL: \(\mathrm{C}=290 \mathrm{psf}\), \(\mathrm{phi}=28 \mathrm{deg}\)


SECTION H-H'
```

Analysis Run Date:	$3 / 20 / 2015$
Time of Run:	$9: 20 \mathrm{PM}$
Run By:	Username
Input Data Filename:	C:4sto8-2s.in
Output Filename:	C:4sto8-2s.OUT
Unit System:	English
Plotted Output Filename:	C:4sto8-2s.PLT

PROBLEM DESCRIPTION: Brilliant Dr Slope Stability Analysis Section H-H (Entire Slope; Static)

```

BOUNDARY COORDINATES

9 Top Boundaries
15 Total Boundaries
\begin{tabular}{crcccc}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
1 & 50.00 & 50.00 & 101.00 & 52.00 & 1 \\
2 & 101.00 & 52.00 & 154.00 & 58.00 & 1 \\
3 & 154.00 & 58.00 & 185.00 & 74.00 & 1 \\
4 & 185.00 & 74.00 & 218.00 & 78.00 & 1 \\
5 & 218.00 & 78.00 & 240.00 & 91.00 & 1 \\
6 & 240.00 & 91.00 & 326.00 & 150.00 & 2 \\
7 & 326.00 & 150.00 & 385.00 & 156.00 & 2 \\
8 & 385.00 & 156.00 & 396.00 & 162.00 & 2 \\
9 & 396.00 & 162.00 & 431.00 & 168.00 & 2 \\
10 & 76.00 & 28.00 & 107.00 & 32.00 & 2 \\
11 & 107.00 & 32.00 & 139.00 & 42.00 & 2 \\
12 & 139.00 & 42.00 & 171.00 & 54.00 & 2 \\
13 & 171.00 & 54.00 & 217.00 & 73.00 & 2 \\
14 & 217.00 & 73.00 & 232.00 & 82.00 & 2 \\
15 & 232.00 & 82.00 & 240.00 & 91.00 & 2 \\
& & & & & 2
\end{tabular}

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Soil & Total & Saturated & Cohesion & Friction & Pore & Pressure & Piez \\
\hline Type No. & Unit Wt (pcf) & Unit Wt. (pcf) & \[
\begin{gathered}
\text { Intercept } \\
\text { (psf) }
\end{gathered}
\] & \begin{tabular}{l}
Angle \\
(deg)
\end{tabular} & Pressure Param. & Constant (psf) & Surface No. \\
\hline 1 & 120.0 & 120.0 & 290.0 & 28.0 & 0.00 & 0.0 & 1 \\
\hline 2 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1 \\
\hline
\end{tabular}

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

1400 Trial Surfaces Have Been Generated.

100 Surface(s) Initiate(s) From Each Of 14 Points Equally Spaced Along The Ground Surface Between X = 130.00(ft)
and \(X=234.00(f t)\)
```

Each Surface Terminates Between X = 300.00(ft)
and }X=400.00(ft
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
20.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1400
Statistical Data On All Valid FS Values:
FS Max = 3.280 FS Min = 1.776 FS Ave = 2.299
Standard Deviation = 0.288 Coefficient of Variation = 12.51

```
```

Failure Surface Specified By 9 Coordinate Points

```
Failure Surface Specified By 9 Coordinate Points
    Point X-Surf Y-Surf
    Point X-Surf Y-Surf
        No. (ft) (ft)
        No. (ft) (ft)
    218.00 78.00
    218.00 78.00
    238.00 78.01
    238.00 78.01
    257.76 81.13
    257.76 81.13
    276.79 87.28
    276.79 87.28
    294.63 96.30
    294.63 96.30
    310.86 107.99
    310.86 107.99
    325.08 122.06
    325.08 122.06
    336.94 138.17
    336.94 138.17
    344.03 151.83
    344.03 151.83
Circle Center At X = 227.93 ; Y = 206.02 ; and Radius = 128.40
Circle Center At X = 227.93 ; Y = 206.02 ; and Radius = 128.40
    Factor of Safety
    *** 1.776 ***
```

```
Failure Surface Specified By 10 Coordinate Points
```

```
        Point X-Surf Y-Surf
        No.
        (ft)
                                (ft)
                                202.00 76.06
                                221.99 76.67
                                241.78 79.57
                                261.11 84.72
                                279.72 92.04
                                297.36 101.46
                                313.81 112.83
        328.85 126.01
        342.28 140.84
        350.64 152.51
Circle Center At X = 206.87 ; Y = 249.32 ; and Radius = 173.33
        Factor of Safety
        *** 1.790 ***
```

1
Failure Surface Specified By 10 Coordinate Points
Point X-Surf Y-Surf
No.
(ft)
(ft)
$\begin{array}{lll}1 & 202.00 & 76.06\end{array}$
$221.99 \quad 75.38$
$241.90 \quad 77.24$
$261.42 \quad 81.60$
$280.23 \quad 88.39$
$298.03 \quad 97.52$
$314.53 \quad 108.82$
$329.47 \quad 122.12$
$342.60 \quad 137.20$
$353.00 \quad 152.75$
Circle Center At $\mathrm{X}=217.38$; $\mathrm{Y}=232.80$; and Radius $=157.49$

```
    Factor of Safety
        *** 1.790 ***
```

```
Failure Surface Specified By 9 Coordinate Points
```

```
        Point X-Surf Y-Surf
        No. (ft) (ft)
        1 218.00 78.00
        237.65 81.70
        256.84 87.37
        275.35 94.93
        293.01 104.32
        309.64 115.43
        325.06 128.17
        339.12 142.39
        346.98 152.13
Circle Center At X = 191.12 ; Y = 274.68 ; and Radius = 198.51
            Factor of Safety
            *** 1.792 ***
```

1
Failure Surface Specified By 9 Coordinate Points

Point No.	$\begin{gathered} \text { X-Surf } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ \text { (ft) } \end{gathered}$
1	226.00	82.73
2	245.91	84.58
3	265.35	89.30
4	283.89	96.80
5	301.14	106.92
6	316.74	119.43
7	330.36	134.08
8	341.70	150.55
9	342.24	151.65

 Factor of Safety
 *** 1.795 ***

```
Failure Surface Specified By 11 Coordinate Points
```

```
        Point X-Surf Y-Surf
        No. (ft) (ft)
                            94.00 75.09
    213.97 73.96
    233.92 75.36
    253.53 79.28
    272.49 85.66
    290.49 94.38
    307.24 105.31
    322.47 118.27
    335.93 133.05
    347.42 149.43
    348.95 152.33
Circle Center At X = 212.89 ; Y = 231.59 ; and Radius = 157.64
    Factor of Safety
*** 1.795 ***
```

1

Failure Surface Specified By 9 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	210.00	77.03
2	230.00	76.65
3	249.78	79.59
4	268.80	85.76
5	286.54	95.00
6	302.50	107.06
7	316.24	121.59
8	327.39	138.20
9	333.05	150.72

```
    Factor of Safety
*** 1.800 ***
```

```
Failure Surface Specified By 10 Coordinate Points
```

```
        Point X-Surf Y-Surf
        No. (ft) (ft)
                1 210.00 77.03
                    229.90 75.05
                    249.86 76.30
                    269.36 80.75
                        287.90 88.27
                                304.98 98.67
                                320.16 111.68
                333.06 126.97
                343.33 144.13
                346.49 152.08
Circle Center At X = 232.29 ; Y = 198.13 ; and Radius = 123.14
            Factor of Safety
                *** 1.807 ***
```

1
Failure Surface Specified By 10 Coordinate Points
$\begin{array}{ccc}\begin{array}{c}\text { Point } \\ \text { No. }\end{array} & \begin{array}{c}\text { X-Surf } \\ (\mathrm{ft})\end{array} & \begin{array}{c}\text { Y-Surf } \\ (\mathrm{ft})\end{array} \\ & & \\ 1 & 218.00 & 78.00 \\ 2 & 237.99 & 77.50 \\ 3 & 257.86 & 79.85 \\ 4 & 277.18 & 85.00 \\ 5 & 295.58 & 92.84 \\ 6 & 312.68 & 103.22 \\ 7 & 328.13 & 115.92 \\ 8 & 341.62 & 130.68 \\ 9 & 352.87 & 147.22 \\ 10 & 355.71 & 153.02 \\ \text { Circle Center At X }= & 231.65 ; \mathrm{Y}= & 216.85 \text {; and Radius }=139.52\end{array}$
Factor of Safety
*** 1.808 ***

Failure Surface Specified By 10 Coordinate Points

```
    Point X-Surf Y-Surf
        No. (ft) (ft)
                            194.00 75.09
        213.91 73.22
        233.88 74.35
        253.46 78.44
        272.21 85.40
        289.71 95.07
        305.58 107.25
        319.45 121.66
        331.01 137.98
        337.68 151.19
Circle Center At X = 216.49 ; Y = 206.30 ; and Radius = 133.13
    Factor of Safety
*** 1.812 ***
```

**** END OF GSTABL7 OUTPUT ****

Brilliant Dr Slope Stability Analysis Section H-H (Entire Slope; Static)


```
                *** GSTABL7 ***
            ** GSTABL7 by Garry H. Gregory, P.E. **
    ** Original Version 1.0, January 1996; Current Version 2.002,
December 2001 **
(All Rights Reserved-Unauthorized Use Prohibited)
**********************************************************************************
*
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer & Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static Earthquake, and Applied Force Options.
***********************************************************************************
*
\begin{tabular}{ll} 
Analysis Run Date: & \(3 / 20 / 2015\) \\
Time of Run: & \(9: 21 \mathrm{PM}\) \\
Run By: & Username \\
Input Data Filename: & C:4sto8-2p.in \\
Output Filename: & C:4sto8-2p.OUT \\
Unit System: & English \\
& \\
Plotted Output Filename: & C:4sto8-2p.PLT
\end{tabular}
PROBLEM DESCRIPTION: Brilliant Dr Slope Stability Analysis Section H-H (Entire Slope; PseudoStatic)
```

BOUNDARY COORDINATES

9 Top Boundaries
15 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Below
1	50.00	50.00	101.00	52.00	1
2	101.00	52.00	154.00	58.00	1
3	154.00	58.00	185.00	74.00	1
4	185.00	74.00	218.00	78.00	1
5	218.00	78.00	240.00	91.00	1
6	240.00	91.00	326.00	150.00	2
7	326.00	150.00	385.00	156.00	2
8	385.00	156.00	396.00	162.00	2
9	396.00	162.00	431.00	168.00	2
10	76.00	28.00	107.00	32.00	2
11	107.00	32.00	139.00	42.00	2
12	139.00	42.00	171.00	54.00	2
13	171.00	54.00	217.00	73.00	2
14	217.00	73.00	232.00	82.00	2
15	232.00	82.00	240.00	91.00	2
					2

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez
Type No.	Unit Wt. (pcf)	Unit Wt. (pcf)	Intercept (psf)	Angle (deg)	Pressure Param.	Constant (psf)	Surface No.
1	120.0	120.0	290.0	28.0	0.00	0.0	1
2	130.0	130.0	570.0	33.0	0.00	0.0	1

A Horizontal Earthquake Loading Coefficient Of0. 320 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of0.000 Has Been Assigned

Cavitation Pressure $=0.0(\mathrm{psf})$

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

```
1400 Trial Surfaces Have Been Generated.
    100 Surface(s) Initiate(s) From Each Of 14 Points Equally Spaced
Along The Ground Surface Between X = 130.00(ft)
                        and }X=234.00(ft
Each Surface Terminates Between X = 300.00(ft)
                        and X = 400.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
20.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.
```

```
* * Safety Factors Are Calculated By The Modified Bishop Method * *
```

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1400
Statistical Data On All Valid FS Values:
FS Max = 1.991 FS Min = 1.046 FS Ave = 1.326
Standard Deviation = 0.173 Coefficient of Variation = 13.02

```
```

Failure Surface Specified By 10 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 218.00 78.00
 237.91 79.93
 257.55 83.67
 276.78 89.18
 295.42 96.43
 313.32 105.35
 330.33 115.86
 346.32 127.89
 361.13 141.32
 373.55 154.84
 Circle Center At X = 206.96 ; Y = 296.22 ; and Radius = 218.49
Factor of Safety
*** 1.046 ***
Failure Surface Specified By 11 Coordinate Points

Point No.	$\begin{gathered} \text { X-Surf } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ (\mathrm{ft}) \end{gathered}$
1	202.00	76.06
2	222.00	75.77
3	241.90	77.73
4	261.46	81.90
5	280.43	88.25
6	298.56	96.69
7	315.63	107.10
8	331.43	119.37
9	345.75	133.33
10	358.41	148.81
11	361.51	153.61

 Factor of Safety
 *** 1.049 ***

```
```

Failure Surface Specified By 14 Coordinate Points

```


Failure Surface Specified By 10 Coordinate Points


Factor of Safety
```

*** 1.053 ***

```
```

Failure Surface Specified By 14 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 (ft)
 162.00 62.13
 182.00 62.07
 201.95 63.44
 221.76 66.23
 241.31 70.42
 260.52 75.99
 279.29 82.92
 297.51 91.16
 315.09 100.68
 331.96 111.44
 348.01 123.36
 363.18 136.40
 377.38 150.48
 381.92 155.69
 Circle Center At X = 172.94 ; Y = 341.69 ; and Radius = 279.77
Factor of Safety
*** 1.053 ***

```
Failure Surface Specified By 14 Coordinate Points
\begin{tabular}{|c|c|c|}
\hline Point No. & \[
\begin{gathered}
\text { X-Surf } \\
\text { (ft) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] \\
\hline 1 & 154.00 & 58.00 \\
\hline 2 & 173.97 & 59.08 \\
\hline 3 & 193.84 & 61.35 \\
\hline 4 & 213.54 & 64.81 \\
\hline 5 & 233.00 & 69.44 \\
\hline 6 & 252.14 & 75.23 \\
\hline 7 & 270.90 & 82.16 \\
\hline 8 & 289.21 & 90.20 \\
\hline 9 & 307.01 & 99.33 \\
\hline 10 & 324.23 & 109.50 \\
\hline 11 & 340.81 & 120.69 \\
\hline 12 & 356.68 & 132.85 \\
\hline 13 & 371.80 & 145.94 \\
\hline 14 & 381.76 & 155.67 \\
\hline
\end{tabular}
    Factor of Safety
*** 1.053 ***
```

Failure Surface Specified By 11 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft)
 194.00 75.09
 214.00 75.15
 233.90 77.20
 253.49 81.21
 272.59 87.15
 291.00 94.95
 308.55 104.54
 325.06 115.83
 340.37 128.70
 354.33 143.02
 362.88 153.75
 Circle Center At X = 203.37 ; Y = 276.14 ; and Radius = 201.27
Factor of Safety
*** 1.054 ***

```

Failure Surface Specified By 14 Coordinate Points
\begin{tabular}{rcr}
\begin{tabular}{c} 
Point \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Surf \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Surf \\
\((\mathrm{ft})\)
\end{tabular} \\
& & \\
1 & 162.00 & 62.13 \\
2 & 181.98 & 61.32 \\
3 & 201.97 & 62.12 \\
4 & 221.83 & 64.51 \\
5 & 241.43 & 68.48 \\
6 & 260.65 & 74.01 \\
7 & 279.37 & 81.05 \\
8 & 297.46 & 89.57 \\
9 & 314.82 & 99.51 \\
10 & 331.32 & 110.81 \\
11 & 346.87 & 123.38 \\
12 & 361.37 & 137.16 \\
13 & 374.71 & 152.06 \\
14 & 377.10 & 155.20
\end{tabular}
    Factor of Safety
    *** 1.054 ***
```

Failure Surface Specified By 10 Coordinate Points

```

```

 Factor of Safety
 *** 1.054 ***

```

Brilliant Dr Slope Stability Analysis Section H-H (Entire Slope; PseudoStatic)

(1) SOIL: \(\mathrm{C}=290 \mathrm{psf}, \mathrm{phi}=28 \mathrm{deg}\)
(2) BEDROCK: \(\mathrm{C}=570 \mathrm{psf}, \mathrm{phi}=33 \mathrm{deg}\)


SECTION I-I'
SCALE: \(1 "=40^{\prime}\)
FIGURE E-3
```

Analysis Run Date:	$3 / 20 / 2015$
Time of Run:	$9: 22 \mathrm{PM}$
Run By:	Username
Input Data Filename:	C:4sto8-3s.in
Output Filename:	C:4sto8-3s.OUT
Unit System:	English
Plotted Output Filename:	C:4sto8-3s.PLT

PROBLEM DESCRIPTION: Brilliant Dr Slope Stability Analysis Section I-I (Entire Slope; Static)

```

BOUNDARY COORDINATES

12 Top Boundaries
15 Total Boundaries
\begin{tabular}{crrrrr}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
& & & & & Type
\end{tabular}

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Soil & Total & Saturated & Cohesion & Friction & Pore & Pressure & Piez. \\
\hline Type No. & Unit Wt (pcf) & Unit Wt. (pcf) & Intercept (psf) & \begin{tabular}{l}
Angle \\
(deg)
\end{tabular} & Pressure Param. & Constant (psf) & Surface No. \\
\hline 1 & 120.0 & 120.0 & 290.0 & 28.0 & 0.00 & 0.0 & 1 \\
\hline 2 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1 \\
\hline
\end{tabular}

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

1800 Trial Surfaces Have Been Generated.

100 Surface(s) Initiate(s) From Each Of 18 Points Equally Spaced Along The Ground Surface Between X = 102.00(ft)
and \(X=204.00(f t)\)
```

Each Surface Terminates Between X = 290.00(ft)
and X = 350.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
10.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1800
Statistical Data On All Valid FS Values:
FS Max = 4.525 FS Min = 1.909 FS Ave = 2.447
Standard Deviation = 0.312 Coefficient of Variation = 12.76

```

Failure Surface Specified By 18 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 192.00 90.00
 201.98 89.36
 211.98 89.44
 221.95 90.23
 231.84 91.73
 241.59 93.93
 251.16 96.83
 260.50 100.40
 269.56 104.64
 278.29 109.51
 286.66 114.99
 294.60 121.06
 302.10 127.68
 309.10 134.82
 315.57 142.44
 321.48 150.51
 326.80 158.98
 328.41 162.00
 Circle Center At X = 205.97 ; Y = 228.75 ; and Radius = 139.45
Factor of Safety
*** 1.909 ***

```

Failure Surface Specified By 18 Coordinate Points
```

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	192.00	90.00
2	202.00	90.23
3	211.96	91.04
4	221.87	92.45
5	231.67	94.44
6	241.33	97.01
7	250.83	100.14
8	260.12	103.83
9	269.18	108.07
10	277.97	112.83
11	286.46	118.11
12	294.63	123.88
13	302.44	130.12
14	309.87	136.82
15	316.89	143.94
16	323.47	151.47
17	329.60	159.37
18	331.40	162.00

Circle Center At X = 193.26 ; Y = 258.51 ; and Radius = 168.51
Factor of Safety
*** 1.911 ***

```

Failure Surface Specified By 18 Coordinate Points
```

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	186.00	89.57
2	195.99	89.02
3	205.98	89.12
4	215.96	89.87
5	225.86	91.28
6	235.64	93.33
7	245.28	96.01
8	254.71	99.33
9	263.91	103.25
10	272.83	107.77
11	281.44	112.86
12	289.69	118.50
13	297.56	124.67
14	305.01	131.35
15	312.00	138.49
16	318.51	146.08
17	324.51	154.09
18	329.67	162.00

Circle Center At X = 199.48 ; Y = 241.56 ; and Radius = 152.58
Factor of Safety
*** 1.912 ***

```

Failure Surface Specified By 18 Coordinate Points
\begin{tabular}{ccc}
\begin{tabular}{c} 
Point \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Surf \\
\((f t)\)
\end{tabular} & \begin{tabular}{c} 
Y-Surf \\
\((\mathrm{ft})\)
\end{tabular} \\
& & \\
1 & 192.00 & 90.00 \\
2 & 201.99 & 90.39 \\
3 & 211.95 & 91.35 \\
4 & 221.83 & 92.89 \\
5 & 231.60 & 95.00 \\
6 & 241.24 & 97.67 \\
7 & 250.71 & 100.89 \\
8 & 259.97 & 104.65 \\
9 & 269.01 & 108.94 \\
10 & 277.77 & 113.75 \\
11 & 286.25 & 119.05 \\
12 & 294.41 & 124.84 \\
13 & 302.22 & 131.08 \\
14 & 309.65 & 137.77 \\
15 & 316.68 & 144.88 \\
16 & 323.30 & 152.38 \\
17 & 329.47 & 160.25 \\
18 & 330.68 & 162.00
\end{tabular}

Factor of Safety *** 1.915 ***

Failure Surface Specified By 17 Coordinate Points
\begin{tabular}{ccc}
\begin{tabular}{c} 
Point \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Surf \\
\((f t)\)
\end{tabular} & \begin{tabular}{c} 
Y-Surf \\
\((f t)\)
\end{tabular} \\
1 & 192.00 & 90.00 \\
2 & 202.00 & 90.06 \\
3 & 211.97 & 90.79 \\
4 & 221.87 & 92.20 \\
5 & 231.65 & 94.28 \\
6 & 241.27 & 97.02 \\
7 & 250.68 & 100.41 \\
8 & 259.84 & 104.43 \\
9 & 268.70 & 109.06 \\
10 & 277.23 & 114.28 \\
11 & 285.38 & 120.07 \\
12 & 293.12 & 126.40 \\
13 & 300.42 & 133.24 \\
14 & 307.23 & 140.56 \\
15 & 313.53 & 148.33 \\
16 & 319.29 & 156.51
\end{tabular}

Factor of Safety
*** 1.919 ***

Failure Surface Specified By 17 Coordinate Points
\begin{tabular}{|c|c|c|c|}
\hline Point No. & \[
\begin{gathered}
\text { X-Surf } \\
(f t)
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] & \\
\hline 1 & 198.00 & 93.14 & \\
\hline 2 & 208.00 & 92.99 & \\
\hline 3 & 217.99 & 93.52 & \\
\hline 4 & 227.91 & 94.71 & \\
\hline 5 & 237.74 & 96.57 & \\
\hline 6 & 247.42 & 99.09 & \\
\hline 7 & 256.91 & 102.25 & \\
\hline 8 & 266.16 & 106.04 & \\
\hline 9 & 275.14 & 110.44 & \\
\hline 10 & 283.80 & 115.44 & \\
\hline 11 & 292.10 & 121.02 & \\
\hline 12 & 300.01 & 127.13 & \\
\hline 13 & 307.49 & 133.77 & \\
\hline 14 & 314.51 & 140.89 & \\
\hline 15 & 321.03 & 148.47 & \\
\hline 16 & 327.03 & 156.47 & \\
\hline 17 & 330.62 & 162.00 & \\
\hline
\end{tabular}

Factor of Safety
*** 1.921 ***

Failure Surface Specified By 18 Coordinate Points
```

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	192.00	90.00
2	202.00	89.93
3	211.99	90.44
4	221.93	91.54
5	231.79	93.20
6	241.53	95.44
7	251.13	98.24
8	260.56	101.59
9	269.77	105.48
10	278.74	109.90
11	287.43	114.84
12	295.83	120.27
13	303.90	126.18
14	311.61	132.55
15	318.93	139.36
16	325.85	146.58
17	332.34	154.19
18	338.26	162.00

Circle Center At X = 198.18 ; Y = 261.99 ; and Radius = 172.10
Factor of Safety
*** 1.923 ***

```

Failure Surface Specified By 18 Coordinate Points


Factor of Safety *** 1.924 ***

Failure Surface Specified By 18 Coordinate Points
```

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	186.00	89.57
2	196.00	89.34
3	205.99	89.77
4	215.93	90.86
5	225.78	92.59
6	235.49	94.97
7	245.03	97.98
8	254.35	101.61
9	263.41	105.84
10	272.17	110.66
11	280.60	116.04
12	288.65	121.97
13	296.30	128.41
14	303.51	135.34
15	310.25	142.72
16	316.49	150.54
17	322.21	158.74
18	324.17	162.00

Circle Center At X = 194.51 ; Y = 241.34 ; and Radius = 152.00
Factor of Safety
*** 1.924 ***

```
```

Failure Surface Specified By 17 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 98.00 93.14
 208.00 93.32
 217.96 94.15
 227.85 95.63
 237.63 97.75
 247.24 100.50
 256.65 103.88
 265.83 107.86
 274.72 112.43
 283.29 117.58
 291.51 123.27
 299.35 129.49
 306.76 136.21
 313.71 143.39
 320.18 151.02
 326.14 159.05
 328.04 162.00
 Circle Center At X = 200.30 ; Y = 246.20 ; and Radius = 153.07

```
    Factor of Safety
*** 1.924 ***
**** END OF GSTABL7 OUTPUT ****

Brilliant Dr Slope Stability Analysis Section I-I (Entire Slope; Static)

```

 *** GSTABL7 ***
 ** GSTABL7 by Garry H. Gregory, P.E. **
 ** Original Version 1.0, January 1996; Current Version 2.002,
 December 2001 **
(All Rights Reserved-Unauthorized Use Prohibited)
**
*
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static Earthquake, and Applied Force Options.

*

Analysis Run Date:	$3 / 20 / 2015$
Time of Run:	$9: 23 P M$
Run By:	Username
Input Data Filename:	C:4sto8-3p.in
Output Filename:	C:4sto8-3p.OUT
Unit System:	English
Plotted Output Filename:	C:4sto8-3p.PLT

PROBLEM DESCRIPTION: Brilliant Dr Slope Stability Analysis Section I-I (Entire Slope; PseudoStatic)

```

BOUNDARY COORDINATES

12 Top Boundaries
15 Total Boundaries
\begin{tabular}{crcccc}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
1 & 50.00 & 50.00 & 63.00 & 56.00 & 1 \\
2 & 63.00 & 56.00 & 91.00 & 64.00 & 1 \\
3 & 91.00 & 64.00 & 114.00 & 70.00 & 1 \\
4 & 114.00 & 70.00 & 129.00 & 78.00 & 1 \\
5 & 129.00 & 78.00 & 164.00 & 88.00 & 1 \\
6 & 164.00 & 88.00 & 192.00 & 90.00 & 1 \\
7 & 192.00 & 90.00 & 234.00 & 112.00 & 2 \\
8 & 234.00 & 112.00 & 250.00 & 122.00 & 2 \\
9 & 250.00 & 122.00 & 297.00 & 152.00 & 2 \\
10 & 297.00 & 152.00 & 305.00 & 160.00 & 2 \\
11 & 305.00 & 160.00 & 312.00 & 162.00 & 2 \\
12 & 312.00 & 162.00 & 350.00 & 162.00 & 2 \\
13 & 50.00 & 41.00 & 113.00 & 63.00 & 2 \\
14 & 113.00 & 63.00 & 177.00 & 82.00 & 2 \\
15 & 177.00 & 82.00 & 192.00 & 90.00 & 2 \\
& & & & & 2
\end{tabular}

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Soil & Total & Saturated & Cohesion & Friction & Pore & Pressure & Piez \\
\hline Type No. & Unit Wt (pcf) & Unit Wt. (pcf) & \[
\begin{gathered}
\text { Intercept } \\
\text { (psf) }
\end{gathered}
\] & \begin{tabular}{l}
Angle \\
(deg)
\end{tabular} & Pressure Param. & Constant (psf) & Surface No. \\
\hline 1 & 120.0 & 120.0 & 290.0 & 28.0 & 0.00 & 0.0 & 1 \\
\hline 2 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1 \\
\hline
\end{tabular}

A Horizontal Earthquake Loading Coefficient Of0. 320 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of0.000 Has Been Assigned

Cavitation Pressure \(=0.0(\mathrm{psf})\)

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.
```

1800 Trial Surfaces Have Been Generated.
100 Surface(s) Initiate(s) From Each Of 18 Points Equally Spaced
Along The Ground Surface Between X = 102.00(ft)
and }X=204.00(ft
Each Surface Terminates Between X = 290.00(ft)
and X = 350.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
10.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1800
Statistical Data On All Valid FS Values:
FS Max = 2.828 FS Min = 1.101 FS Ave = 1.401
Standard Deviation = 0.182 Coefficient of Variation = 12.96

```

Failure Surface Specified By 18 Coordinate Points
```

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	192.00	90.00
2	202.00	89.93
3	211.99	90.44
4	221.93	91.54
5	231.79	93.20
6	241.53	95.44
7	251.13	98.24
8	260.56	101.59
9	269.77	105.48
10	278.74	109.90
11	287.43	114.84
12	295.83	120.27
13	303.90	126.18
14	311.61	132.55
15	318.93	139.36
16	325.85	146.58
17	332.34	154.19
18	338.26	162.00

Circle Center At X = 198.18 ; Y = 261.99 ; and Radius = 172.10
Factor of Safety
*** 1.101 ***

```
```

Failure Surface Specified By 19 Coordinate Points

```
\begin{tabular}{|c|c|c|}
\hline Point No. & \[
\begin{gathered}
\text { X-Surf } \\
(\mathrm{ft})
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] \\
\hline 1 & 192.00 & 90.00 \\
\hline 2 & 201.99 & 90.47 \\
\hline 3 & 211.94 & 91.44 \\
\hline 4 & 221.84 & 92.89 \\
\hline 5 & 231.65 & 94.83 \\
\hline 6 & 241.35 & 97.26 \\
\hline 7 & 250.92 & 100.15 \\
\hline 8 & 260.34 & 103.52 \\
\hline 9 & 269.58 & 107.34 \\
\hline 10 & 278.62 & 111.62 \\
\hline 11 & 287.43 & 116.33 \\
\hline 12 & 296.01 & 121.48 \\
\hline 13 & 304.32 & 127.04 \\
\hline 14 & 312.35 & 133.00 \\
\hline 15 & 320.07 & 139.35 \\
\hline 16 & 327.47 & 146.08 \\
\hline 17 & 334.54 & 153.16 \\
\hline 18 & 341.24 & 160.58 \\
\hline 19 & 342.40 & 162.00 \\
\hline
\end{tabular}
    Factor of Safety
*** 1.103 ***
```

Failure Surface Specified By 19 Coordinate Points

```
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Point \\
No.
\end{tabular} & \[
\begin{gathered}
\text { X-Surf } \\
(\mathrm{ft})
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
(\mathrm{ft})
\end{gathered}
\] \\
\hline 1 & 192.00 & 90.00 \\
\hline 2 & 202.00 & 89.71 \\
\hline 3 & 211.99 & 89.96 \\
\hline 4 & 221.96 & 90.76 \\
\hline 5 & 231.87 & 92.11 \\
\hline 6 & 241.69 & 93.99 \\
\hline 7 & 251.39 & 96.41 \\
\hline 8 & 260.95 & 99.36 \\
\hline 9 & 270.33 & 102.82 \\
\hline 10 & 279.51 & 106.79 \\
\hline 11 & 288.46 & 111.26 \\
\hline 12 & 297.15 & 116.21 \\
\hline 13 & 305.55 & 121.62 \\
\hline 14 & 313.65 & 127.49 \\
\hline 15 & 321.41 & 133.79 \\
\hline 16 & 328.82 & 140.51 \\
\hline 17 & 335.85 & 147.62 \\
\hline 18 & 342.48 & 155.11 \\
\hline 19 & 347.95 & 162.00 \\
\hline
\end{tabular}
    Factor of Safety
*** 1.107 ***

Failure Surface Specified By 18 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 192.00 90.00
 202.00 90.23
 211.96 91.04
 221.87 92.45
 231.67 94.44
 241.33 97.01
 250.83 100.14
 260.12 103.83
 269.18 108.07
 277.97 112.83
 286.46 118.11
 294.63 123.88
 302.44 130.12
 309.87 136.82
 316.89 143.94
 323.47 151.47
 329.60 159.37
 331.40 162.00
 Circle Center At X = 193.26 ; Y = 258.51 ; and Radius = 168.51
Factor of Safety
*** 1.108 ***

```

Failure Surface Specified By 18 Coordinate Points


Factor of Safety
```

*** 1.110 ***

```
```

Failure Surface Specified By 19 Coordinate Points

```
\begin{tabular}{rcr}
\begin{tabular}{c} 
Point \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Surf \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Surf \\
\((\mathrm{ft})\)
\end{tabular} \\
1 & 186.00 & 89.57 \\
2 & 195.97 & 88.74 \\
3 & 205.96 & 88.53 \\
4 & 215.95 & 88.95 \\
5 & 225.90 & 90.00 \\
6 & 235.76 & 91.67 \\
7 & 245.49 & 93.96 \\
8 & 255.07 & 96.85 \\
9 & 264.44 & 100.34 \\
10 & 273.57 & 104.41 \\
11 & 282.43 & 109.05 \\
12 & 290.98 & 114.23 \\
13 & 299.19 & 119.94 \\
14 & 307.03 & 126.15 \\
15 & 314.46 & 132.85 \\
16 & 321.45 & 139.99 \\
17 & 327.98 & 147.57 \\
18 & 334.03 & 155.53 \\
19 & 338.32 & 162.00
\end{tabular}
    Factor of Safety
*** 1.110 ***

Failure Surface Specified By 20 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 180.00 89.14
 189.97 88.40
 199.97 88.25
 209.96 88.69
 219.91 89.72
 229.78 91.34
 239.53 93.54
 249.14 96.31
 258.57 99.65
 267.78 103.53
 276.75 107.96
 285.44 112.91
 293.82 118.36
 301.87 124.30
 309.55 130.70
 316.83 137.55
 323.70 144.82
 330.13 152.48
 336.09 160.51
 337.07 162.00
 Circle Center At X = 197.54 ; Y = 257.08 ; and Radius = 168.85
Factor of Safety
*** 1.111 ***

```

Failure Surface Specified By 20 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 186.00 89.57
 195.98 89.00
 205.98 88.95
 215.97 89.45
 225.92 90.48
 235.80 92.03
 245.58 94.12
 255.23 96.72
 264.73 99.84
 274.05 103.46
 283.17 107.58
 292.05 112.18
 300.67 117.24
 309.01 122.76
 317.04 128.72
 324.74 135.10
 332.09 141.88
 339.07 149.05
 345.65 156.57
 349.90 162.00
 Circle Center At X = 201.79 ; Y = 275.52 ; and Radius = 186.61
Factor of Safety
*** 1.111 ***

```

Failure Surface Specified By 18 Coordinate Points


Factor of Safety
```

*** 1.111 ***

```
```

Failure Surface Specified By 19 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 192.00 90.00
 201.96 90.86
 211.88 92.13
 221.74 93.81
 231.52 95.90
 241.21 98.38
 250.78 101.27
 260.23 104.55
 269.53 108.21
 278.68 112.26
 287.65 116.68
 296.42 121.47
 305.00 126.62
 313.35 132.11
 321.47 137.95
 329.34 144.12
 336.96 150.60
 344.29 157.40
 348.86 162.00
 Circle Center At X = 176.16 ; Y = 331.55 ; and Radius = 242.06

```
    Factor of Safety
*** 1.111 ***
**** END OF GSTABL7 OUTPUT ****

Brilliant Dr Slope Stability Analysis Section I-I (Entire Slope; PseudoStatic)

(1) SOIL: \(\mathrm{C}=290 \mathrm{psf}, \mathrm{phi}=28 \mathrm{deg}\)
(2) BEDROCK: \(\mathrm{C}=570 \mathrm{psf}, \mathrm{phi}=33 \mathrm{deg}\)

(2)

FIGURE E-4
```

 *** GSTABL7 ***
 ** GSTABL7 by Garry H. Gregory, P.E. **
 ** Original Version 1.0, January 1996; Current Version 2.002,
 December 2001 **
(All Rights Reserved-Unauthorized Use Prohibited)
**
*
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static Earthquake, and Applied Force Options.

*

Analysis Run Date:	$3 / 20 / 2015$
Time of Run:	$9: 24 \mathrm{PM}$
Run By:	Username
Input Data Filename:	C:4sto8-4s.in
Output Filename:	C:4sto8-4s.OUT
Unit System:	English
Plotted Output Filename:	C:4sto8-4s.PLT

PROBLEM DESCRIPTION: Haverhill Dr Slope Stability Analysis Section J-J (Entire Slope; Static)

```

BOUNDARY COORDINATES

10 Top Boundaries
14 Total Boundaries
\begin{tabular}{crcccc}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
1 & 50.00 & 50.00 & 80.00 & 50.00 & 1 \\
2 & 80.00 & 50.00 & 151.00 & 65.00 & 1 \\
3 & 151.00 & 65.00 & 200.00 & 76.00 & 1 \\
4 & 200.00 & 76.00 & 247.00 & 91.00 & 1 \\
5 & 247.00 & 91.00 & 294.00 & 110.00 & 2 \\
6 & 294.00 & 110.00 & 300.00 & 110.00 & 2 \\
7 & 300.00 & 110.00 & 381.00 & 140.00 & 2 \\
8 & 381.00 & 140.00 & 428.00 & 154.00 & 2 \\
9 & 428.00 & 154.00 & 437.00 & 158.00 & 2 \\
10 & 437.00 & 158.00 & 477.00 & 158.00 & 2 \\
11 & 50.00 & 36.00 & 210.00 & 73.00 & 2 \\
12 & 210.00 & 73.00 & 226.00 & 77.00 & 2 \\
13 & 226.00 & 77.00 & 238.00 & 83.00 & 2 \\
14 & 238.00 & 83.00 & 247.00 & 91.00 & 2 \\
& & & & & \\
Default Y-Origin \(=0.00(f t)\) & & & & 2
\end{tabular}

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Soil & Total & Saturated & Cohesion & Friction & Pore & Pressure & Piez. \\
\hline Type No. & Unit Wt (pcf) & Unit Wt. (pcf) & Intercept (psf) & Angle (deg) & Pressure Param. & Constant (psf) & Surface No. \\
\hline 1 & 120.0 & 120.0 & 290.0 & 28.0 & 0.00 & 0.0 & 1 \\
\hline 2 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1 \\
\hline
\end{tabular}

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

1500 Trial Surfaces Have Been Generated.

100 Surface(s) Initiate(s) From Each Of 15 Points Equally Spaced Along The Ground Surface Between X = 50.00 (ft) and \(X=230.00(f t)\)

Each Surface Terminates Between \(\quad X=370.00(f t)\)
and \(X=470.00(f t)\)
```

Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
25.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1500
Statistical Data On All Valid FS Values:
FS Max = 4.426 FS Min = 2.698 FS Ave = 3.301
Standard Deviation = 0.421 Coefficient of Variation = 12.76
Failure Surface Specified By 15 Coordinate Points
Point X-Surf y-Surf
No. (ft) (ft)
152.86 65.42
177.59 61.77
202.52 59.88
227.52 59.74
252.47 61.37
277.24 64.75
301.71 69.87
325.76 76.70
349.26 85.21
372.11 95.35
394.19 107.07
415.39 120.32
435.61 135.04
454.73 151.13
461.81 158.00
Circle Center At X = 216.91 ; Y = 414.28 ; and Radius = 354.69
Factor of Safety
*** 2.698 ***

```
```

Failure Surface Specified By 14 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 178.57 71.19
 203.09 66.32
 227.95 63.66
 252.95 63.22
 277.88 65.00
 302.56 69.00
 326.79 75.17
 350.37 83.48
 373.12 93.85
 394.85 106.20
 415.40 120.43
 434.60 136.44
 452.31 154.10
 455.58 158.00
 Circle Center At X = 245.43 ; Y = 343.22 ; and Radius = 280.13
Factor of Safety
*** 2.700 ***

```

1

Failure Surface Specified By 13 Coordinate Points

    Factor of Safety
*** 2.700 ***

Failure Surface Specified By 15 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 152.86 65.42
 177.38 60.56
 202.22 57.73
 227.21 56.96
 252.18 58.24
 276.95 61.56
 301.38 66.90
 325.28 74.24
 348.49 83.51
 370.87 94.65
 392.26 107.60
 412.51 122.26
 431.49 138.53
 449.07 156.30
 450.49 158.00
 Circle Center At X = 224.16 ; Y = 361.17 ; and Radius = 304.22

```
```

 Factor of Safety
    ```
    Factor of Safety
*** 2.700 ***
```

*** 2.700 ***

```
```

Failure Surface Specified By 15 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 140.00
 62.68
 164.72 58.94
 189.64 56.90
 214.63 56.56
 239.60 57.92
 264.41 60.97
 288.96 65.71
 313.12 72.11
 336.80 80.14
 359.87 89.76
 382.24 100.93
 403.79 113.60
 424.44 127.70
 444.07 143.18
 460.45 158.00
 Circle Center At X = 207.15 ; Y = 423.54 ; and Radius = 367.06
Factor of Safety
*** 2.704 ***

```
Failure Surface Specified By 15 Coordinate Points
\begin{tabular}{ccr}
\begin{tabular}{c} 
Point \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Surf \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Surf \\
(ft)
\end{tabular} \\
1 & 140.00 & 62.68 \\
2 & 164.76 & 59.21 \\
3 & 189.70 & 57.48 \\
4 & 214.70 & 57.49 \\
5 & 239.64 & 59.25 \\
6 & 264.39 & 62.74 \\
7 & 288.84 & 67.96 \\
8 & 312.87 & 74.86 \\
9 & 336.36 & 83.43 \\
10 & 359.19 & 93.61 \\
11 & 381.25 & 105.36 \\
12 & 402.45 & 118.63 \\
13 & 422.66 & 133.34 \\
14 & 441.80 & 149.42 \\
15 & 450.67 & 158.00
\end{tabular}
Circle Center At \(\mathrm{X}=202.01\); \(\mathrm{Y}=415.32\); and Radius \(=358.06\)
    Factor of Safety
*** 2.706 ***
```

Failure Surface Specified By 15 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 $2.86 65.42
 177.31 60.19
 202.10 56.98
 227.07 55.80
 252.06 56.66
 276.89 59.56
 301.40 64.47
 325.43 71.36
 348.82 80.19
 371.41 90.90
 393.05 103.41
 413.60 117.65
 432.92 133.52
 450.88 150.91
 457.11 158.00
 Circle Center At X = 229.03 ; Y = 362.10 ; and Radius = 306.31
Factor of Safety
*** 2.706 ***

```
Failure Surface Specified By 15 Coordinate Points
\begin{tabular}{ccr}
\begin{tabular}{c} 
Point \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Surf \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Surf \\
(ft)
\end{tabular} \\
1 & 152.86 & 65.42 \\
2 & 177.33 & 60.31 \\
3 & 202.13 & 57.16 \\
4 & 227.10 & 56.00 \\
5 & 252.09 & 56.84 \\
6 & 276.93 & 59.66 \\
7 & 301.47 & 64.46 \\
8 & 325.54 & 71.19 \\
9 & 349.00 & 79.83 \\
10 & 371.71 & 90.30 \\
11 & 393.50 & 102.55 \\
12 & 414.25 & 116.50 \\
13 & 433.82 & 132.05 \\
14 & 452.09 & 149.12 \\
15 & 460.19 & 158.00
\end{tabular}
Circle Center At \(\mathrm{X}=229.12\); \(\mathrm{Y}=369.49\); and Radius \(=313.49\)
    Factor of Safety
*** 2.707 ***
```

Failure Surface Specified By 14 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 (ft)
 178.57 71.19
 203.50 69.23
 228.49 68.96
 253.45 70.36
 278.26 73.44
 302.81 78.18
 326.98 84.57
 350.67 92.56
 373.76 102.13
 396.16 113.23
 417.77 125.82
 438.47 139.82
 458.19 155.19
 461.33 158.00
 Circle Center At X = 220.17 ; Y = 439.62 ; and Radius = 370.77
Factor of Safety
*** 2.707 ***

```
Failure Surface Specified By 13 Coordinate Points
\begin{tabular}{|c|c|c|}
\hline Point No. & \[
\begin{gathered}
\text { X-Surf } \\
\text { (ft) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] \\
\hline 1 & 191.43 & 74.08 \\
\hline 2 & 216.36 & 72.26 \\
\hline 3 & 241.36 & 72.22 \\
\hline 4 & 266.30 & 73.96 \\
\hline 5 & 291.05 & 77.48 \\
\hline 6 & 315.49 & 82.75 \\
\hline 7 & 339.49 & 89.76 \\
\hline 8 & 362.93 & 98.45 \\
\hline 9 & 385.69 & 108.80 \\
\hline 10 & 407.65 & 120.74 \\
\hline 11 & 428.71 & 134.21 \\
\hline 12 & 448.75 & 149.15 \\
\hline 13 & 459.00 & 158.00 \\
\hline
\end{tabular}
    Factor of Safety
\(* * *\)
\(2.709 \quad * * *\)
        **** END OF GSTABL7 OUTPUT ****

Haverhill Dr Slope Stability Analysis Section J-J (Entire Slope; Static)

```

 *** GSTABL7 ***
 ** GSTABL7 by Garry H. Gregory, P.E. **
 ** Original Version 1.0, January 1996; Current Version 2.002,
 December 2001 **
(All Rights Reserved-Unauthorized Use Prohibited)
**
*
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static Earthquake, and Applied Force Options.

*

| Analysis Run Date: | $3 / 20 / 2015$ |
| :--- | :--- |
| Time of Run: | $9: 24 \mathrm{PM}$ |
| Run By: | Username |
| Input Data Filename: | C:4sto8-4p.in |
| Output Filename: | C:4sto8-4p.OUT |
| Unit System: | English |
| | |
| Plotted Output Filename: | C:4sto8-4p.PLT |

PROBLEM DESCRIPTION: Haverhill Dr Slope Stability Analysis Section J-J (Entire Slope; PseudoStatic)

```

BOUNDARY COORDINATES

10 Top Boundaries
14 Total Boundaries
\begin{tabular}{crcccc}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
1 & 50.00 & 50.00 & 80.00 & 50.00 & 1 \\
2 & 80.00 & 50.00 & 151.00 & 65.00 & 1 \\
3 & 151.00 & 65.00 & 200.00 & 76.00 & 1 \\
4 & 200.00 & 76.00 & 247.00 & 91.00 & 1 \\
5 & 247.00 & 91.00 & 294.00 & 110.00 & 2 \\
6 & 294.00 & 110.00 & 300.00 & 110.00 & 2 \\
7 & 300.00 & 110.00 & 381.00 & 140.00 & 2 \\
8 & 381.00 & 140.00 & 428.00 & 154.00 & 2 \\
9 & 428.00 & 154.00 & 437.00 & 158.00 & 2 \\
10 & 437.00 & 158.00 & 477.00 & 158.00 & 2 \\
11 & 50.00 & 36.00 & 210.00 & 73.00 & 2 \\
12 & 210.00 & 73.00 & 226.00 & 77.00 & 2 \\
13 & 226.00 & 77.00 & 238.00 & 83.00 & 2 \\
14 & 238.00 & 83.00 & 247.00 & 91.00 & 2 \\
& & & & & 2
\end{tabular}

ISOTROPIC SOIL PARAMETERS
    2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
    No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
        \(\begin{array}{llllllll}1 & 120.0 & 120.0 & 290.0 & 28.0 & 0.00 & 0.0 & 1\end{array}\)
    \(\begin{array}{llllllll}2 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1\end{array}\)

A Horizontal Earthquake Loading Coefficient Of0. 320 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of0.000 Has Been Assigned

Cavitation Pressure \(=0.0(\mathrm{psf})\)

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

1500 Trial Surfaces Have Been Generated.

100 Surface(s) Initiate(s) From Each Of 15 Points Equally Spaced Along The Ground Surface Between \(X=50.00(f t)\) and \(X=230.00(f t)\)

Each Surface Terminates Between \(\quad X=370.00(f t)\) and \(X=470.00(f t)\)

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is \(Y=0.00\) (ft)
20.00(ft) Line Segments Define Each Trial Failure Surface.
```

Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

```
Total Number of Trial Surfaces Evaluated \(=1500\)
Statistical Data On All Valid FS Values:
    FS Max \(=2.221\) FS Min \(=1.278 \quad\) FS Ave \(=1.588\)
    Standard Deviation \(=0.216\) Coefficient of Variation \(=13.59\)
```

Failure Surface Specified By 21 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 101.43 54.53
 121.19 51.42
 141.06 49.21
 161.02 47.92
 181.02 47.54
 201.01 48.07
 220.96 49.52
 240.82 51.88
 260.55 55.15
 280.11 59.31
 299.46 64.37
 318.56 70.30
 337.37 77.10
 355.85 84.76
 373.96 93.25
 391.66 102.56
 408.91 112.67
 425.69 123.56
 441.95 135.20
 457.66 147.58
 469.71 158.00
 Circle Center At X = 179.31 ; Y = 484.77 ; and Radius = 437.23
Factor of Safety
*** 1.278 ***

```
```

Failure Surface Specified By 20 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 127.14 59.96
 146.92 56.96
 166.81 54.94
 186.79 53.92
 206.79 53.88
 226.77 54.84
 246.67 56.80
 266.45 59.73
 286.07 63.65
 305.46 68.54
 324.59 74.38
 343.40 81.17
 361.85 88.88
 379.90 97.50
 397.50 107.00
 414.60 117.37
 431.17 128.57
 447.16 140.59
 462.53 153.38
 467.56 158.00
 Circle Center At X = 197.46 ; Y = 455.80 ; and Radius = 402.04
Factor of Safety
*** 1.278 ***

```
```

Failure Surface Specified By 19 Coordinate Points

```
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Point \\
No.
\end{tabular} & \[
\begin{gathered}
\text { X-Surf } \\
(\mathrm{ft})
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
\text { (ft) }
\end{gathered}
\] \\
\hline 1 & 140.00 & 62.68 \\
\hline 2 & 159.82 & 59.97 \\
\hline 3 & 179.74 & 58.26 \\
\hline 4 & 199.73 & 57.54 \\
\hline 5 & 219.73 & 57.82 \\
\hline 6 & 239.69 & 59.11 \\
\hline 7 & 259.56 & 61.38 \\
\hline 8 & 279.29 & 64.65 \\
\hline 9 & 298.83 & 68.90 \\
\hline 10 & 318.14 & 74.12 \\
\hline 11 & 337.16 & 80.30 \\
\hline 12 & 355.85 & 87.43 \\
\hline 13 & 374.16 & 95.47 \\
\hline 14 & 392.04 & 104.43 \\
\hline 15 & 409.46 & 114.26 \\
\hline 16 & 426.36 & 124.95 \\
\hline 17 & 442.71 & 136.48 \\
\hline 18 & 458.46 & 148.80 \\
\hline 19 & 469.07 & 158.00 \\
\hline
\end{tabular}
    Factor of Safety
*** 1.278 ***

Failure Surface Specified By 20 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 127.14 59.96
 147.00 57.55
 166.94 56.06
 186.93 55.48
 206.93 55.83
 226.89 57.09
 246.77 59.27
 266.53 62.36
 286.13 66.36
 305.52 71.25
 324.67 77.03
 343.53 83.68
 362.06 91.20
 380.23 99.55
 398.00 108.74
 415.33 118.73
 432.18 129.50
 448.51 141.04
 464.30 153.32
 469.78 158.00
 Circle Center At X = 189.47 ; Y = 489.89 ; and Radius = 434.43
*** Factor of Safety
*** 1.278 ***

```
```

Failure Surface Specified By 22 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 88.57 51.81
 108.28 48.41
 128.12 45.91
 148.06 44.31
 168.05 43.63
 188.05 43.85
 208.01 44.98
 227.91 47.02
 247.69 49.97
 267.32 53.81
 286.75 58.53
 305.95 64.14
 324.87 70.62
 343.48 77.95
 361.74 86.11
 379.60 95.11
 397.04 104.90
 414.02 115.48
 430.49 126.81
 446.43 138.89
 461.81 151.68
 468.74 158.00
 Circle Center At X = 173.16 ; Y = 482.59 ; and Radius = 439.00
Factor of Safety

```
```

Failure Surface Specified By 21 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 101.43 54.53
 121.27 52.02
 141.20 50.37
 161.19 49.56
 181.19 49.62
 201.17 50.53
 221.09 52.29
 240.92 54.90
 260.62 58.35
 280.15 62.65
 299.48 67.77
 318.58 73.72
 337.40 80.48
 355.92 88.04
 374.10 96.38
 391.90 105.49
 409.30 115.35
 426.26 125.95
 442.75 137.26
 458.75 149.27
 469.39 158.00
 Circle Center At X = 169.94 ; Y = 517.29 ; and Radius = 467.80
Factor of Safety
*** 1.279 ***

```
```

Failure Surface Specified By 21 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 101.43 54.53
 121.16 51.23
 141.02 48.88
 160.97 47.47
 180.96 47.01
 200.96 47.51
 220.90 48.94
 240.76 51.33
 260.48 54.65
 280.03 58.91
 299.34 64.09
 318.39 70.18
 337.13 77.16
 355.52 85.03
 373.51 93.77
 391.07 103.34
 408.16 113.74
 424.73 124.94
 440.75 136.91
 456.18 149.63
 465.41 158.00
 Circle Center At X = 180.63 ; Y = 468.28 ; and Radius = 421.27
Factor of Safety
*** 1.280 ***

```

Failure Surface Specified By 20 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 127.14 59.96
 146.84 56.47
 166.69 54.03
 186.64 52.65
 206.64 52.33
 226.62 53.06
 246.54 54.86
 266.34 57.71
 285.96 61.60
 305.34 66.53
 324.44 72.47
 343.19 79.42
 361.55 87.36
 379.46 96.25
 396.88 106.09
 413.75 116.83
 430.02 128.45
 445.66 140.92
 460.62 154.19
 464.47 158.00
 Circle Center At X = 202.76 ; Y = 429.13 ; and Radius = 376.83
Factor of Safety
*** 1.280 ***

```

Failure Surface Specified By 18 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 152.86 65.42
 172.66 62.60
 192.58 60.86
 212.57 60.20
 232.57 60.63
 252.51 62.14
 272.34 64.74
 292.00 68.41
 311.43 73.14
 330.58 78.92
 349.39 85.72
 367.79 93.54
 385.75 102.35
 403.20 112.12
 420.10 122.82
 436.39 134.43
 452.02 146.90
 464.49 158.00
 Circle Center At X = 214.68 ; Y = 428.10 ; and Radius = 367.92
Factor of Safety
*** 1.280 ***

```
```

Failure Surface Specified By 21 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 114.29 57.24
 133.90 53.35
 153.70 50.48
 173.61 48.64
 193.59 47.82
 213.59 48.04
 233.55 49.29
 253.42 51.57
 273.15 54.87
 292.68 59.19
 311.96 64.51
 330.94 70.82
 349.56 78.10
 367.79 86.34
 385.57 95.50
 402.85 105.57
 419.58 116.52
 435.73 128.32
 451.25 140.94
 466.10 154.34
 469.75 158.00
 Circle Center At X = 199.37 ; Y = 434.88 ; and Radius = 387.10
Factor of Safety
*** 1.280 ***

```
**** END OF GSTABL7 OUTPUT ****

(1) BEDROCK: \(\mathrm{C}=570 \mathrm{psf}\), phi \(=33 \mathrm{deg}\)


SECTION N-N'
SCALE: \(1^{\prime \prime}=50^{\prime}\)
FIGURE E-5
```

 *** GSTABL7 ***
 ** GSTABL7 by Garry H. Gregory, P.E. **
 ** Original Version 1.0, January 1996; Current Version 2.002,
 December 2001 **
(All Rights Reserved-Unauthorized Use Prohibited)
**
*
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static Earthquake, and Applied Force Options.

*

| Analysis Run Date: | $3 / 20 / 2015$ |
| :--- | :--- |
| Time of Run: | $8: 58 \mathrm{PM}$ |
| Run By: | Username |
| Input Data Filename: | C:4sto8-5s.in |
| Output Filename: | C:4sto8-5s.oUT |
| Unit System: | English |
| | |
| Plotted Output Filename: | C:4sto8-5s.PLT |

PROBLEM DESCRIPTION: Haverhill Dr Slope Stability Analysis Section N-N (Entire Slope; Static)

```

BOUNDARY COORDINATES

10 Top Boundaries
10 Total Boundaries
\begin{tabular}{crcrcc}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
& & & & & \\
1 & 50.00 & 50.00 & 80.00 & 50.00 & 1 \\
2 & 80.00 & 50.00 & 114.00 & 80.00 & 1 \\
3 & 114.00 & 80.00 & 134.00 & 90.00 & 1 \\
4 & 134.00 & 90.00 & 161.00 & 100.00 & 1 \\
5 & 161.00 & 100.00 & 197.00 & 111.00 & 1 \\
6 & 197.00 & 111.00 & 233.00 & 117.00 & 1 \\
7 & 233.00 & 117.00 & 284.00 & 130.00 & 1 \\
8 & 284.00 & 130.00 & 413.00 & 160.00 & 1 \\
9 & 413.00 & 160.00 & 450.00 & 170.00 & 1 \\
10 & 450.00 & 170.00 & 472.00 & 173.00 & 1 \\
Default Y-Origin \(=0.00(f t)\) & & & &
\end{tabular}

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Soil & Total & Saturated & Cohesion & Friction & Pore & Pressure & Pie \\
\hline Type No. & Unit Wt (pcf) & Unit Wt. (pcf) & Intercept (psf) & \begin{tabular}{l}
Angle \\
(deg)
\end{tabular} & Pressure Param. & Constant (psf) & Surface No. \\
\hline 1 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1 \\
\hline
\end{tabular}

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

1100 Trial Surfaces Have Been Generated.

100 Surface(s) Initiate(s) From Each Of 11 Points Equally Spaced Along The Ground Surface Between X = 50.00(ft)
and \(X=100.00(f t)\)

Each Surface Terminates Between \(X=120.00\) (ft)
and \(X=250.00(f t)\)

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is \(Y=0.00\) (ft)
```

6.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1100
Statistical Data On All Valid FS Values:
FS Max = 7.525 FS Min = 1.992 FS Ave = 3.037
Standard Deviation = 0.655 Coefficient of Variation = 21.57
Failure Surface Specified By 16 Coordinate Points

| Point
 No. | X-Surf
 (ft) | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| | | |
| 1 | 80.00 | 50.00 |
| 2 | 85.95 | 50.76 |
| 3 | 91.84 | 51.89 |
| 4 | 97.65 | 53.40 |
| 5 | 103.35 | 55.28 |
| 6 | 108.92 | 57.51 |
| 7 | 114.33 | 60.10 |
| 8 | 119.57 | 63.03 |
| 9 | 124.61 | 66.28 |
| 10 | 129.43 | 69.85 |
| 11 | 134.02 | 73.72 |
| 12 | 138.35 | 77.87 |
| 13 | 142.41 | 82.29 |
| 14 | 146.17 | 86.97 |
| 15 | 149.63 | 91.87 |
| 16 | 152.75 | 96.94 |

Circle Center At X = 71.11 ; Y = 143.61 ; and Radius = 94.03
Factor of Safety
*** 1.992 ***

```
\%

Failure Surface Specified By 16 Coordinate Points
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 80.00 50.00
 85.92 50.98
 91.77 52.31
 97.54 53.97
 103.19 55.98
 108.72 58.31
 114.10 60.97
 119.31 63.93
 124.35 67.20
 129.18 70.76
 133.79 74.60
 138.17 78.70
 142.30 83.05
 146.16 87.64
 149.75 92.45
 152.70 96.93
 Circle Center At X = 66.37 ; Y = 150.90 ; and Radius = 101.82
Factor of Safety
*** 2.003 ***

```

Failure Surface Specified By 15 Coordinate Points
```

| Point | X-Surf | Y-Surf |
| :---: | :---: | :---: |
| No. | $(f t)$ | $(f t)$ |

 80.00 50.00
 86.00 49.95
 91.98 50.46
 97.88 51.54
 103.66 53.17
 109.25 55.33
 114.62 58.02
 119.70 61.20
 124.47 64.85
 128.87 68.93
 132.86 73.41
 136.41 78.24
 139.49 83.39
 142.07 88.81
 143.83 93.64
 Circle Center At X = 83.56 ; Y = 113.34 ; and Radius = 63.44
Factor of Safety
*** 2.004 ***

```

Failure Surface Specified By 17 Coordinate Points


Factor of Safety *** 2.008 ***

Failure Surface Specified By 18 Coordinate Points
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Point \\
No.
\end{tabular} & \[
\begin{gathered}
\text { X-Surf } \\
(\mathrm{ft})
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
(\mathrm{ft})
\end{gathered}
\] & & \\
\hline 1 & 80.00 & 50.00 & & \\
\hline 2 & 85.91 & 51.06 & & \\
\hline 3 & 91.76 & 52.38 & & \\
\hline 4 & 97.54 & 53.97 & & \\
\hline 5 & 103.25 & 55.83 & & \\
\hline 6 & 108.86 & 57.95 & & \\
\hline 7 & 114.37 & 60.32 & & \\
\hline 8 & 119.77 & 62.94 & & \\
\hline 9 & 125.04 & 65.81 & & \\
\hline 10 & 130.18 & 68.91 & & \\
\hline 11 & 135.16 & 72.25 & & \\
\hline 12 & 139.99 & 75.81 & & \\
\hline 13 & 144.65 & 79.59 & & \\
\hline 14 & 149.13 & 83.58 & & \\
\hline 15 & 153.43 & 87.77 & & \\
\hline 16 & 157.52 & 92.15 & & \\
\hline 17 & 161.42 & 96.72 & & \\
\hline 18 & 164.88 & 101.19 & & \\
\hline Circle & At \(\mathrm{X}=\) & 59.95 ; \(\mathrm{Y}=\) & 179.21 ; and Radius = & 130.76 \\
\hline \multicolumn{5}{|c|}{Factor of Safety} \\
\hline & 2.024 & & & \\
\hline
\end{tabular}
```

Failure Surface Specified By 15 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 1 80.00 50.00
 85.99 49.68
 91.98 49.98
 97.91 50.89
 103.72 52.42
 109.33 54.54
 114.69 57.23
 119.75 60.46
 124.44 64.19
 128.73 68.39
 132.55 73.02
 135.88 78.01
 138.67 83.32
 140.89 88.90
 142.05 92.98
 Circle Center At X = 86.11 ; Y = 107.54 ; and Radius = 57.87
Factor of Safety
*** 2.026 ***

```

1

Failure Surface Specified By 13 Coordinate Points
\begin{tabular}{ccc}
\begin{tabular}{c} 
Point \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Surf \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Surf \\
\((\mathrm{ft})\)
\end{tabular} \\
& & 50.00 \\
1 & 80.00 & 50.73 \\
2 & 85.96 & 52.03 \\
3 & 91.81 & 53.89 \\
4 & 97.52 & 56.30 \\
5 & 103.01 & 59.23 \\
6 & 108.25 & 62.65 \\
7 & 113.17 & 70.84 \\
8 & 117.74 & 75.56 \\
9 & 121.91 & 80.59 \\
10 & 125.64 & 85.93 \\
11 & 128.90 & 89.55 \\
12 & 131.65 & \\
13 & 133.10 & \\
& & \\
Circle Center At \(\mathrm{X}=\) & \(75.54 ; \mathrm{Y}=\) & \\
\hline
\end{tabular}

Factor of Safety *** 2.043 ***
```

Failure Surface Specified By 21 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 0.00 50.00
 86.00 50.02
 91.99 50.38
 97.95 51.07
 103.86 52.09
 109.71 53.43
 115.47 55.10
 121.14 57.08
 126.68 59.38
 132.09 61.98
 137.34 64.87
 142.43 68.06
 147.33 71.52
 152.03 75.25
 156.52 79.23
 160.78 83.46
 164.79 87.91
 168.56 92.59
 172.06 97.46
 175.28 102.52
 176.53 104.74
 Circle Center At X = 82.59 ; Y = 157.99 ; and Radius = 108.02
Factor of Safety
*** 2.048 ***

```

Failure Surface Specified By 15 Coordinate Points
```

| Point | X-Surf | Y-Surf |
| :---: | :---: | :---: |
| No. | (ft) | (ft) |

 80.00 50.00
 85.81 51.52
 91.52 53.34
 97.13 55.48
 102.61 57.91
 107.96 60.64
 113.15 63.65
 118.17 66.94
 123.00 70.49
 127.64 74.30
 132.06 78.35
 136.26 82.64
 140.22 87.15
 143.93 91.86
 145.66 94.32
 Circle Center At X = 54.86 ; Y = 158.15 ; and Radius = 111.03

```
```

 Factor of Safety
    ```
    Factor of Safety
*** 2.072 ***
```

*** 2.072 ***

```
```

Failure Surface Specified By 16 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 75.00 50.00
 80.95 49.19
 86.94 49.02
 92.92 49.51
 98.81 50.64
 104.55 52.41
 110.06 54.79
 115.28 57.75
 120.14 61.26
 124.60 65.27
 128.59 69.75
 132.08 74.64
 135.02 79.87
 137.37 85.39
 139.10 91.13
 139.26 91.95
 Circle Center At X = 85.47 ; Y = 104.16 ; and Radius = 55.16
Factor of Safety
*** 2.078 ***
**** END OF GSTABL7 OUTPUT ****

```

\section*{Haverhill Dr Slope Stability Analysis Section N-N (Entire Slope; Static)}

```

 *** GSTABL7 ***
 ** GSTABL7 by Garry H. Gregory, P.E. **
 ** Original Version 1.0, January 1996; Current Version 2.002,
 December 2001 **
(All Rights Reserved-Unauthorized Use Prohibited)
**
*
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static Earthquake, and Applied Force Options.
**
*

Analysis Run Date:	$3 / 20 / 2015$
Time of Run:	$8: 59 \mathrm{PM}$
Run By:	Username
Input Data Filename:	C:4sto8-5p.in
Output Filename:	C:4sto8-5p.OUT
Unit System:	English
Plotted Output Filename:	C:4sto8-5p.PLT

PROBLEM DESCRIPTION: Haverhill Dr Slope Stability Analysis Section N-N (Entire Slope; PseudoStatic)

```

BOUNDARY COORDINATES

10 Top Boundaries
10 Total Boundaries
\begin{tabular}{crcrcc}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
(ft)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
& & & & & \\
1 & 50.00 & 50.00 & 80.00 & 50.00 & 1 \\
2 & 80.00 & 50.00 & 114.00 & 80.00 & 1 \\
3 & 114.00 & 80.00 & 134.00 & 90.00 & 1 \\
4 & 134.00 & 90.00 & 161.00 & 100.00 & 1 \\
5 & 161.00 & 100.00 & 197.00 & 111.00 & 1 \\
6 & 197.00 & 111.00 & 233.00 & 117.00 & 1 \\
7 & 233.00 & 117.00 & 284.00 & 130.00 & 1 \\
8 & 284.00 & 130.00 & 413.00 & 160.00 & 1 \\
9 & 413.00 & 160.00 & 450.00 & 170.00 & 1 \\
10 & 450.00 & 170.00 & 472.00 & 173.00 & 1 \\
& & & & & \\
Default Y-Origin \(=0.00(f t)\) & & &
\end{tabular}

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Soil & Total & rated & Cohesion & Friction & Pore & Pressur & Pie \\
\hline \begin{tabular}{l}
Type \\
No.
\end{tabular} & Unit Wt (pcf) & Unit Wt. (pcf) & Intercept (psf) & \begin{tabular}{l}
Angle \\
(deg)
\end{tabular} & Pressure Param. & Constant (psf) & Surface No. \\
\hline 1 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1 \\
\hline
\end{tabular}

A Horizontal Earthquake Loading Coefficient Of0. 320 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of0.000 Has Been Assigned

Cavitation Pressure \(=0.0(\mathrm{psf})\)

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

1100 Trial Surfaces Have Been Generated.

100 Surface(s) Initiate(s) From Each Of 11 Points Equally Spaced Along The Ground Surface Between \(X=50.00\) (ft)
and \(X=100.00\) (ft)
```

Each Surface Terminates Between X = 120.00(ft)
and X = 250.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
6.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1100
Statistical Data On All Valid FS Values:
FS Max = 5.110 FS Min = 1.168 FS Ave = 1.694
Standard Deviation = 0.373 Coefficient of Variation = 22.00

```
```

Failure Surface Specified By 25 Coordinate Points

```
```

 Point
 80.00 50.00
 85.98 50.49
 91.94 51.17
 97.88 52.06
 103.78 53.14
 109.64 54.41
 115.46 55.88
 121.22 57.54
 126.93 59.40
 132.57 61.44
 138.14 63.67
 143.64 66.08
 149.05 68.67
 154.37 71.44
 159.60 74.39
 164.72 77.51
 169.74 80.79
 174.65 84.24
 179.44 87.86
 184.11 91.63
 188.65 95.55
 193.05 99.62
 197.32 103.84
 201.45 108.19
 205.14 112.36
 Circle Center At X = 68.33 ; Y = 230.19 ; and Radius = 180.56
Factor of Safety
*** 1.168 ***

```
```

Failure Surface Specified By 28 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 80.00 50.00
 85.93 50.92
 91.84 51.97
 97.72 53.14
 103.58 54.45
 109.40 55.88
 115.20 57.44
 120.95 59.13
 126.67 60.94
 132.35 62.88
 137.99 64.94
 143.58 67.12
 149.12 69.43
 154.60 71.86
 160.04 74.40
 165.41 77.06
 170.73 79.84
 175.99 82.74
 181.18 85.75
 186.30 88.87
 191.35 92.11
 196.33 95.45
 201.24 98.91
 206.07 102.47
 210.82 106.13
 215.49 109.90
 220.08 113.76
 221.59 115.10
 Circle Center At X = 41.02 ; Y = 321.32 ; and Radius = 274.10

```
    Factor of Safety
*** 1.180 ***
```

Failure Surface Specified By 21 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 0.00 50.00
 86.00 50.02
 91.99 50.38
 97.95 51.07
 103.86 52.09
 109.71 53.43
 115.47 55.10
 121.14 57.08
 126.68 59.38
 132.09 61.98
 137.34 64.87
 142.43 68.06
 147.33 71.52
 152.03 75.25
 156.52 79.23
 160.78 83.46
 164.79 87.91
 168.56 92.59
 172.06 97.46
 175.28 102.52
 176.53 104.74
 Circle Center At X = 82.59 ; Y = 157.99 ; and Radius = 108.02
Factor of Safety
*** 1.187 ***

```
```

Failure Surface Specified By 21 Coordinate Points

```
```

 Point
 80.00 50.00
 85.87 51.23
 91.70 52.65
 97.48 54.26
 103.21 56.05
 108.88 58.02
 114.48 60.17
 120.01 62.49
 125.46 65.00
 130.83 67.67
 136.12 70.52
 141.30 73.53
 146.39 76.71
 151.38 80.04
 156.26 83.54
 161.02 87.19
 165.66 90.99
 170.19 94.93
 174.58 99.02
 178.84 103.24
 181.77 106.35
 Circle Center At X = 44.32 ; Y = 234.60 ; and Radius = 188.02
Factor of Safety
*** 1.192 ***

```

Failure Surface Specified By 18 Coordinate Points


Factor of Safety *** 1.197 ***
```

Failure Surface Specified By 26 Coordinate Points

```
```

 Point
 80.00 50.00
 85.99 49.63
 91.99 49.53
 97.99 49.70
 103.97 50.14
 109.93 50.86
 115.85 51.83
 121.72 53.08
 127.52 54.59
 133.26 56.36
 138.90 58.38
 144.45 60.66
 149.90 63.19
 155.22 65.96
 160.41 68.97
 165.46 72.20
 170.36 75.67
 175.10 79.35
 179.67 83.24
 184.06 87.33
 188.26 91.62
 192.26 96.09
 196.05 100.73
 199.63 105.55
 203.00 110.52
 204.01 112.17
 Circle Center At X = 91.21 ; Y = 182.40 ; and Radius = 132.88
Factor of Safety
*** 1.200 ***

```
```

Failure Surface Specified By 25 Coordinate Points

```
```

 Point
 80.00 50.00
 85.83 51.40
 91.64 52.92
 97.41 54.57
 103.14 56.34
 108.84 58.23
 114.49 60.24
 120.10 62.37
 125.66 64.61
 131.18 66.98
 136.64 69.46
 142.05 72.06
 147.40 74.77
 152.69 77.59
 157.93 80.53
 163.09 83.58
 168.20 86.73
 173.23 90.00
 178.20 93.37
 183.09 96.84
 187.91 100.42
 192.65 104.10
 197.31 107.87
 201.89 111.75
 201.98 111.83
 Circle Center At X = 16.99 ; Y = 325.55 ; and Radius = 282.66
Factor of Safety
*** 1.200 ***

```
```

Failure Surface Specified By 31 Coordinate Points

```
```

 Point
 80.00 50.00
 86.00 50.03
 92.00 50.23
 97.99 50.60
 103.96 51.14
 109.92 51.84
 115.86 52.71
 121.77 53.74
 127.65 54.94
 133.49 56.30
 139.29 57.83
 145.05 59.52
 150.76 61.37
 156.41 63.37
 162.01 65.54
 167.54 67.85
 173.01 70.33
 178.41 72.95
 183.73 75.73
 188.97 78.65
 194.12 81.72
 199.19 84.93
 204.17 88.28
 209.05 91.77
 213.83 95.39
 218.51 99.15
 223.08 103.03
 227.54 107.04
 231.89 111.18
 236.12 115.43
 239.05 118.54
 Circle Center At X = 81.82 ; Y = 264.63 ; and Radius = 214.64
Factor of Safety
*** 1.201 ***

```
```

Failure Surface Specified By 33 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 (ft)
 80.00 50.00
 86.00 50.13
 91.99 50.40
 97.98 50.82
 103.95 51.40
 109.91 52.12
 115.84 52.99
 121.76 54.01
 127.64 55.17
 133.50 56.48
 139.32 57.94
 145.10 59.54
 150.84 61.28
 156.54 63.17
 162.19 65.19
 167.78 67.36
 173.32 69.67
 178.80 72.11
 184.22 74.69
 189.57 77.40
 194.85 80.25
 200.06 83.22
 205.19 86.33
 210.25 89.56
 215.22 92.92
 220.11 96.40
 224.91 100.00
 229.62 103.72
 234.23 107.55
 238.75 111.50
 243.17 115.56
 247.48 119.73
 248.75 121.01
 Circle Center At X = 77.96 ; Y = 290.90 ; and Radius = 240.91

```
    Factor of Safety
*** 1.206 ***
```

Failure Surface Specified By 16 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 80.00 50.00
 85.95 50.76
 91.84 51.89
 97.65 53.40
 103.35 55.28
 108.92 57.51
 114.33 60.10
 119.57 63.03
 124.61 66.28
 129.43 69.85
 134.02 73.72
 138.35 77.87
 142.41 82.29
 146.17 86.97
 149.63 91.87
 152.75 96.94
 Circle Center At X = 71.11 ; Y = 143.61 ; and Radius = 94.03
Factor of Safety
*** 1.211 ***
**** END OF GSTABL7 OUTPUT ****

```

\section*{Haverhill Dr Slope Stability Analysis Section N-N (Entire Slope; PseudoStatic)}

(1) BEDROCK: \(\mathrm{C}=570 \mathrm{psf}, \mathrm{phi}=33 \mathrm{deg}\)
(2) SOIL: \(\mathrm{C}=290 \mathrm{psf}, \mathrm{phi}=28 \mathrm{deg}\)


FIGURE E-6
```

Analysis Run Date:	$3 / 20 / 2015$
Time of Run:	$9: 06 \mathrm{PM}$
Run By:	Username
Input Data Filename:	C:4sto8-6s.in
Output Filename:	C:4sto8-6s.oUT
Unit System:	English
Plotted Output Filename:	C:4sto8-6s.PLT

PROBLEM DESCRIPTION: Haverhill Dr Slope Stability Analysis Section R-R (Entire Slope; Static)

```

BOUNDARY COORDINATES

18 Top Boundaries
22 Total Boundaries
\begin{tabular}{ccrcrc}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
& & & & & \\
1 & 50.00 & 50.00 & 80.00 & 51.00 & 1 \\
2 & 80.00 & 51.00 & 94.00 & 53.00 & 1 \\
3 & 94.00 & 53.00 & 148.00 & 68.00 & 1 \\
4 & 148.00 & 68.00 & 165.00 & 68.00 & 1 \\
5 & 165.00 & 68.00 & 165.10 & 73.00 & 1 \\
6 & 165.10 & 73.00 & 165.20 & 78.00 & 2 \\
7 & 165.20 & 78.00 & 189.00 & 78.00 & 2 \\
8 & 189.00 & 78.00 & 189.10 & 88.00 & 2 \\
9 & 189.10 & 88.00 & 206.00 & 91.00 & 2 \\
10 & 206.00 & 91.00 & 237.00 & 93.00 & 2 \\
11 & 237.00 & 93.00 & 249.00 & 97.00 & 1 \\
12 & 249.00 & 97.00 & 278.00 & 97.00 & 1 \\
13 & 278.00 & 97.00 & 278.10 & 107.00 & 1 \\
14 & 278.10 & 107.00 & 298.00 & 107.00 & 1 \\
15 & 298.00 & 107.00 & 298.10 & 114.00 & 1 \\
16 & 298.10 & 114.00 & 318.00 & 122.00 & 1 \\
17 & 318.00 & 122.00 & 334.00 & 133.00 & 1 \\
18 & 334.00 & 133.00 & 383.00 & 135.00 & 1 \\
19 & 165.10 & 73.00 & 181.00 & 75.00 & 1 \\
20 & 181.00 & 75.00 & 189.00 & 78.00 & 1 \\
21 & 189.00 & 78.00 & 209.00 & 82.00 & 1 \\
22 & 209.00 & 82.00 & 237.00 & 93.00 & 1
\end{tabular}

Default Y-Origin = 0.00(ft)

ISOTROPIC SOIL PARAMETERS
    2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
    No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
        \(\begin{array}{llllllll}1 & 130.0 & 130.0 & 570.0 & 33.0 & 0.00 & 0.0 & 1\end{array}\)
        \(\begin{array}{llllllll}2 & 120.0 & 120.0 & 290.0 & 28.0 & 0.00 & 0.0 & 1\end{array}\)
1

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.
```

 1 0 0 \text { Surface(s) Initiate(s) From Each Of 19 Points Equally Spaced}
 Along The Ground Surface Between X = 50.00(ft)
and X = 185.00(ft)
Each Surface Terminates Between X = 240.00(ft)
and X = 380.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
8.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1900
Statistical Data On All Valid FS Values:
FS Max = 9.367 FS Min = 3.020 FS Ave = 4.142
Standard Deviation = 0.929 Coefficient of Variation = 22.42

```
```

Failure Surface Specified By 40 Coordinate Points

```

    Factor of Safety
*** 3.020 ***
```

Failure Surface Specified By 40 Coordinate Points

```

Factor of Safety
*** 3.030 ***
```

Failure Surface Specified By 43 Coordinate Points

```

```

Failure Surface Specified By 38 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 102.50
 55.36
 110.32 53.66
 118.18 52.17
 126.08 50.90
 134.01 49.86
 141.97 49.04
 149.94 48.45
 157.94 48.07
 165.93 47.93
 173.93 48.00
 181.93 48.30
 189.91 48.83
 197.88 49.58
 205.82 50.55
 213.73 51.75
 221.60 53.16
 229.43 54.80
 237.21 56.65
 244.94 58.73
 252.61 61.02
 260.20 63.52
 267.73 66.23
 275.17 69.16
 282.54 72.29
 289.81 75.63
 296.98 79.17
 304.05 82.91
 311.01 86.85
 317.86 90.99
 324.60 95.31
 331.20 99.82
 337.68 104.51
 344.03 109.38
 350.23 114.43
 356.29 119.65
 362.20 125.04
 367.96 130.60
 371.83 134.54
 Circle Center At X = 167.20 ; Y = 332.93 ; and Radius = 285.01

```
    Factor of Safety
*** 3.032 ***
```

Failure Surface Specified By 38 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 110.00
 57.44
 117.86 55.93
 125.75 54.62
 133.67 53.52
 141.62 52.64
 149.59 51.96
 157.58 51.50
 165.58 51.25
 173.58 51.21
 181.58 51.38
 189.57 51.77
 197.54 52.36
 205.50 53.17
 213.44 54.19
 221.34 55.42
 229.21 56.86
 237.04 58.51
 244.82 60.36
 252.55 62.42
 260.23 64.69
 267.84 67.15
 275.38 69.82
 282.85 72.69
 290.23 75.76
 297.54 79.02
 304.76 82.47
 311.88 86.11
 318.90 89.94
 325.82 93.96
 332.63 98.16
 339.33 102.53
 345.91 107.09
 352.36 111.81
 358.69 116.71
 364.88 121.77
 370.94 126.99
 376.86 132.38
 379.44 134.85
 Circle Center At X = 171.06 ; Y = 352.53 ; and Radius = 301.34
Factor of Safety
*** 3.034 ***

```
```

Failure Surface Specified By 42 Coordinate Points

```
```

 Point
 80.00 51.00
 87.92 49.84
 95.86 48.85
 103.81 48.04
 111.79 47.39
 119.77 46.91
 127.77 46.60
 135.77 46.46
 143.77 46.50
 151.76 46.70
 159.75 47.08
 167.74 47.62
 175.70 48.34
 183.65 49.23
 191.58 50.28
 199.49 51.51
 207.37 52.90
 215.21 54.46
 223.02 56.19
 230.80 58.08
 238.53 60.14
 246.21 62.37
 253.85 64.76
 261.43 67.31
 268.96 70.02
 276.42 72.89
 283.83 75.92
 291.16 79.11
 298.43 82.45
 305.63 85.95
 312.74 89.60
 319.78 93.40
 326.74 97.36
 333.61 101.45
 340.39 105.70
 347.08 110.09
 353.67 114.62
 360.17 119.29
 366.56 124.10
 372.85 129.04
 379.03 134.12
 379.92 134.87
 Circle Center At X = 138.18 ; Y = 421.12 ; and Radius = 374.67
Factor of Safety
*** 3.035 ***

```
```

Failure Surface Specified By 43 Coordinate Points

```

```

Failure Surface Specified By 38 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No.
 (ft)
 102.50
 55.36
 110.39 54.05
 118.32 52.94
 126.26 52.03
 134.23 51.33
 142.22 50.82
 150.21 50.52
 158.21 50.42
 166.21 50.53
 174.20 50.84
 182.19 51.35
 190.16 52.06
 198.10 52.97
 206.03 54.09
 213.92 55.40
 221.77 56.92
 229.59 58.63
 237.35 60.54
 245.07 62.65
 252.73 64.95
 260.33 67.45
 267.87 70.13
 275.33 73.01
 282.72 76.08
 290.03 79.33
 297.26 82.77
 304.39 86.39
 311.43 90.18
 318.37 94.16
 325.21 98.31
 331.94 102.63
 338.56 107.13
 345.07 111.78
 351.45 116.60
 357.71 121.59
 363.84 126.73
 369.84 132.02
 372.59 134.58
 Circle Center At X = 158.11 ; Y = 365.84 ; and Radius = 315.42

```
    Factor of Safety
*** 3.037 ***
```

Failure Surface Specified By 43 Coordinate Points

```

```

Failure Surface Specified By 41 Coordinate Points

```
```

 Point X-Surf Y-Surf
 No. (ft) (ft)
 80.00 51.00
 87.80 49.22
 95.64 47.65
 103.53 46.29
 111.44 45.14
 119.39 44.20
 127.36 43.47
 135.34 42.95
 143.33 42.64
 151.33 42.55
 159.33 42.67
 167.32 43.01
 175.31 43.55
 183.27 44.31
 191.21 45.28
 199.12 46.46
 207.00 47.85
 214.84 49.44
 222.63 51.25
 230.38 53.26
 238.06 55.48
 245.69 57.90
 253.25 60.53
 260.73 63.35
 268.14 66.37
 275.46 69.59
 282.70 73.00
 289.84 76.60
 296.89 80.39
 303.83 84.37
 310.66 88.53
 317.38 92.87
 323.98 97.39
 330.46 102.08
 336.82 106.94
 343.04 111.97
 349.13 117.16
 355.07 122.52
 360.87 128.02
 366.52 133.69
 367.16 134.35
 Circle Center At X = 150.80 ; Y = 343.43 ; and Radius = 300.88

```
    Factor of Safety
*** 3.038 ***
**** END OF GSTABL7 OUTPUT ****

Haverhill Dr Slope Stability Analysis Section R-R (Entire Slope; Static)

```

 *** GSTABL7 ***
 ** GSTABL7 by Garry H. Gregory, P.E. **
 ** Original Version 1.0, January 1996; Current Version 2.002,
 December 2001 **
(All Rights Reserved-Unauthorized Use Prohibited)
*
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static Earthquake, and Applied Force Options.
**
*

Analysis Run Date:	$3 / 20 / 2015$
Time of Run:	$9: 07 \mathrm{PM}$
Run By:	Username
Input Data Filename:	C:4sto8-6p.in
Output Filename:	C:4sto8-6p.OUT
Unit System:	English
Plotted Output Filename:	C:4sto8-6p.PLT

PROBLEM DESCRIPTION: Haverhill Dr Slope Stability Analysis Section R-R (Entire Slope; PseudoStatic)

```

BOUNDARY COORDINATES

18 Top Boundaries
22 Total Boundaries
\begin{tabular}{ccrcrc}
\begin{tabular}{c} 
Boundary \\
No.
\end{tabular} & \begin{tabular}{c} 
X-Left \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Left \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
X-Right \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Y-Right \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
Soil \\
Below
\end{tabular} \\
& & & & & Type
\end{tabular}

ISOTROPIC SOIL PARAMETERS
```

2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
1
2 120.0 120.0 290.0 28.0 0.00 0.0 1

```
A Horizontal Earthquake Loading Coefficient
Of0. 320 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of0.000 Has Been Assigned
```

Cavitation Pressure = 0.0(psf)

```
```

A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1900 Trial Surfaces Have Been Generated.
1 0 0 ~ S u r f a c e (s) ~ I n i t i a t e (s) ~ F r o m ~ E a c h ~ O f ~ 1 9 ~ P o i n t s ~ E q u a l l y ~ S p a c e d
Along The Ground Surface Between X = 50.00(ft)
and }X=185.00(ft
Each Surface Terminates Between X = 240.00(ft)
and X = 380.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
8.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Evaluated = 1900
Statistical Data On All Valid FS Values:
FS Max = 3.544 FS Min = 1.385 FS Ave = 1.851
Standard Deviation = 0.314 Coefficient of Variation = 16.94

```
```

Failure Surface Specified By 42 Coordinate Points

```
```

 Point
 80.00 51.00
 87.92 49.84
 95.86 48.85
 103.81 48.04
 111.79 47.39
 119.77 46.91
 127.77 46.60
 135.77 46.46
 143.77 46.50
 151.76 46.70
 159.75 47.08
 167.74 47.62
 175.70 48.34
 183.65 49.23
 191.58 50.28
 199.49 51.51
 207.37 52.90
 215.21 54.46
 223.02 56.19
 230.80 58.08
 238.53 60.14
 246.21 62.37
 253.85 64.76
 261.43 67.31
 268.96 70.02
 276.42 72.89
 283.83 75.92
 291.16 79.11
 298.43 82.45
 305.63 85.95
 312.74 89.60
 319.78 93.40
 326.74 97.36
 333.61 101.45
 340.39 105.70
 347.08 110.09
 353.67 114.62
 360.17 119.29
 366.56 124.10
 372.85 129.04
 379.03 134.12
 379.92 134.87
 Circle Center At X = 138.18 ; Y = 421.12 ; and Radius = 374.67
Factor of Safety
*** 1.385 ***

```
```

Failure Surface Specified By 40 Coordinate Points

```
\begin{tabular}{|c|c|c|}
\hline Point No. & \[
\begin{gathered}
\text { X-Surf } \\
(\mathrm{ft})
\end{gathered}
\] & \[
\begin{gathered}
\text { Y-Surf } \\
(\mathrm{ft})
\end{gathered}
\] \\
\hline 1 & 95.00 & 53.28 \\
\hline 2 & 102.78 & 51.41 \\
\hline 3 & 110.61 & 49.77 \\
\hline 4 & 118.48 & 48.33 \\
\hline 5 & 126.39 & 47.11 \\
\hline 6 & 134.32 & 46.11 \\
\hline 7 & 142.28 & 45.32 \\
\hline 8 & 150.26 & 44.76 \\
\hline 9 & 158.26 & 44.41 \\
\hline 10 & 166.26 & 44.28 \\
\hline 11 & 174.25 & 44.37 \\
\hline 12 & 182.25 & 44.68 \\
\hline 13 & 190.23 & 45.20 \\
\hline 14 & 198.20 & 45.95 \\
\hline 15 & 206.14 & 46.91 \\
\hline 16 & 214.05 & 48.09 \\
\hline 17 & 221.93 & 49.49 \\
\hline 18 & 229.76 & 51.10 \\
\hline 19 & 237.55 & 52.92 \\
\hline 20 & 245.29 & 54.96 \\
\hline 21 & 252.97 & 57.21 \\
\hline 22 & 260.58 & 59.66 \\
\hline 23 & 268.12 & 62.33 \\
\hline 24 & 275.59 & 65.20 \\
\hline 25 & 282.98 & 68.27 \\
\hline 26 & 290.28 & 71.54 \\
\hline 27 & 297.49 & 75.02 \\
\hline 28 & 304.60 & 78.68 \\
\hline 29 & 311.60 & 82.54 \\
\hline 30 & 318.50 & 86.60 \\
\hline 31 & 325.29 & 90.83 \\
\hline 32 & 331.95 & 95.26 \\
\hline 33 & 338.49 & 99.86 \\
\hline 34 & 344.91 & 104.64 \\
\hline 35 & 351.19 & 109.59 \\
\hline 36 & 357.33 & 114.72 \\
\hline 37 & 363.34 & 120.01 \\
\hline 38 & 369.19 & 125.46 \\
\hline 39 & 374.89 & 131.07 \\
\hline 40 & 378.50 & 134.82 \\
\hline
\end{tabular}
Factor of Safety
*** 1.385 ***
```

Failure Surface Specified By 43 Coordinate Points

```

```

Failure Surface Specified By 43 Coordinate Points

```

```

Failure Surface Specified By 45 Coordinate Points

```

    Factor of Safety
*** 1.390 ***
```

Failure Surface Specified By 40 Coordinate Points

```

    Factor of Safety
*** 1.391 ***
```

Failure Surface Specified By 43 Coordinate Points

```

```

Failure Surface Specified By 43 Coordinate Points

```

```

Failure Surface Specified By 45 Coordinate Points

```

    Factor of Safety
*** 1.392 ***
```

Failure Surface Specified By 45 Coordinate Points

```
```

 Point
 57.50 50.25
 65.21 48.12
 72.97 46.19
 80.78 44.44
 88.63 42.89
 96.52 41.54
 104.43 40.38
 112.37 39.42
 120.34 38.65
 128.32 38.08
 136.31 37.71
 144.31 37.54
 152.31 37.57
 160.30 37.79
 168.29 38.21
 176.27 38.83
 184.22 39.65
 192.16 40.66
 200.07 41.87
 207.94 43.28
 215.78 44.88
 223.58 46.67
 231.33 48.66
 239.03 50.84
 246.67 53.21
 254.25 55.76
 261.76 58.51
 269.21 61.44
 276.58 64.55
 283.87 67.84
 291.07 71.32
 298.19 74.97
 305.22 78.80
 312.15 82.79
 318.97 86.96
 325.70 91.30
 332.31 95.80
 338.81 100.47
 345.19 105.29
 351.45 110.27
 357.58 115.41
 363.59 120.69
 369.46 126.13
 375.20 131.70
 378.24 134.81
 Circle Center At X = 147.26 ; Y = 360.47 ; and Radius = 322.94
Factor of Safety
*** 1.392 ***
**** END OF GSTABL7 OUTPUT ****

```

Haverhill Dr Slope Stability Analysis Section R-R (Entire Slope; PseudoStatic)



\section*{ASSUMPTIONS:}
1. The slip surface is 3 feet from the slope surface and parallel to the slope
2. The saturation is to extend 3 feet below the slope surface
3. There is sufficient permeability to establish water flow and the flow lines are parallel to the slope surface.
\[
\text { F.S. }=\frac{C+\left(\gamma_{t}-\gamma_{w}\right) h \cos ^{2}(\alpha) \tan (\phi)}{\gamma_{t} \mathrm{~h} \cos (\alpha) \sin (\alpha)}
\]

Where:

\section*{F.S. - Factor of Safety}
h - Vertical Depth of Saturation \(\quad h=3\) feet
\(\gamma_{t} \quad\) - Total Unit Weight of Saturated Soil \(\gamma_{t}=115 \mathrm{pcf}\)
\(\gamma_{\mathrm{w}}\) - Unit Weight of Water \(\quad \gamma_{\mathrm{w}}=62 \mathrm{pcf}\)
C - Cohesion \(\quad \mathrm{C}=360 \mathrm{psf}\)
\(\phi\) - Friction Angle \(\quad \phi=20\) degrees
\(\alpha\) - Slope Angle \(\alpha=34\) degrees
F.S. \(=\frac{360+(115-62)(3) \cos ^{2}(34) \tan (20)}{(115)(3) \cos (34) \sin (34)}\)
F.S. \(=2.50\)

APPENDIX F

\title{
WIDTH OF THE SLOT CUT \\ FOR 5 FEET HIGH EXCAVATION
}
(Stability of Temporary Excavations in Fill)
Data:
Height of Cut, \(\quad h=5.0 \mathrm{ft}\)
Slope Angle, \(\quad \beta=45.0 \mathrm{deg}\)
Density of Soil, \(\quad \gamma_{\mathrm{S}}=120 \mathrm{pcf}\)
Cohesion, \(\mathrm{C}=290 \mathrm{psf}\)
Friction Angle, \(\quad \phi=28 \mathrm{deg}\)
Factor of Safety, F.S. \(=1.50\)

Maximum Width of Slot:

\[
\mathrm{d}=\frac{1 / 3 * \gamma_{\mathrm{s}} * \mathrm{~K}_{\mathrm{o}} * \tan \phi *\left(\mathrm{~h}^{2} *(\mathrm{a}+\mathrm{b})-\mathrm{H}_{\mathrm{c}}^{2} * \mathrm{a}\right)+2 \mathrm{~A} * \mathrm{C}}{(\mathrm{~F} . \mathrm{S} .) * \mathrm{~W} * \sin \alpha * \cos \alpha-\mathrm{W} * \cos ^{2} \alpha * \tan \phi-\mathrm{C} * \mathrm{~b}}
\]

Determination of the components of equation:

Slide plane angle, \(\quad \alpha=54.8 \mathrm{deg} \quad\) (Search for Critical Failure Plane)
Location of Tension Crack \(\mathrm{a}=0.0 \mathrm{ft}\)
Length of Wedge, \(\quad \mathrm{b}=12.0 \mathrm{ft}\)
Height of Tension Crack, \(\mathrm{H}_{\mathrm{c}}=0.0 \mathrm{ft}\)
Area of Wedge, \(\quad \mathrm{A}=\mathrm{b} *\left(\mathrm{~h}+\mathrm{H}_{\mathrm{c}}\right) / 2=30.1 \mathrm{ft}^{2}\)
Weight of Wedge, \(\quad \mathrm{W}=\mathrm{A} * \gamma_{\mathrm{s}}=\quad 3611 \mathrm{lbs}\)
Coef. of latteral pressure, \(\mathrm{K}_{\mathrm{o}}=1-\sin \phi=0.53\)
\(\mathrm{d}=\frac{1 / 3 * 120 * 0.53 * \tan 28 *(5 * 5 *(0+12)-0 * 0 * 0)+2 * 290 * 30.1}{1.5 * 3610.6 * \sin 54.8 * \cos 54.8-3610.6 * \cos 54.8 * \cos 54.8 * \tan 28-290 * 12}\)
\[
\mathrm{d}=\frac{20846.4}{-1577.1}=-13.2 \mathrm{ft}
\]

The Wedge Is Not Failing

\section*{TENSION CRACK LOCATION}
(Stability of Temporary Excavations in Fill)

\section*{DATA:}
\begin{tabular}{lcl} 
Soil Density, & \(\gamma_{\mathrm{s}}=120\) & pcf \\
Cohesion, & \(\mathrm{C}=290\) & psf \\
Friction Angle, & \(\phi=28\) & degrees \\
Surface Angle, & \(\beta=45.0\) & degrees \\
Fail. Plane Angle, & \(\alpha=54.8\) & degrees \\
Height of Cut, & \(\mathrm{h}=5.0\) & ft
\end{tabular}

Factor of Safety, F.S. \(=1.0\)


HEIGHT AND LOCATION OF TENSION CRACK:
Total Length of Block, \(\quad L_{B}=(h * \cos \beta) /(\sin (\alpha-\beta))=20.9 \mathrm{ft}\)
Height of Crack, \(\quad \mathrm{H}_{\mathrm{c}}=\mathrm{C} /\left(\gamma_{\mathrm{s}} * \cos \alpha^{*}\left(\sin \alpha^{*}\right.\right.\) F.S. \(\left.\left.-\cos \alpha^{*} \tan \phi\right)\right)=8.2 \mathrm{ft}\)
Location of Crack, \(\quad a=H_{c} /(\tan \alpha-\tan \beta)=19.8 \mathrm{ft}\)
Location of Crack, \(\quad \mathrm{b}=\mathrm{L}_{\mathrm{B}} * \cos \alpha-\mathrm{H}_{\mathrm{c}} /(\tan \alpha-\tan \beta)=-7.7 \mathrm{ft}\)
Length of Failure Plane, \(\quad \mathrm{L}=\mathrm{b} / \cos \alpha=-13.4 \mathrm{ft}\)

\title{
WIDTH OF THE SLOT CUT \\ FOR 24 FEET HIGH EXCAVATION
}
(Stability of Temporary Excavations After Installation of Piles)
Data:
Height of Cut, \(\quad h=24.0 \mathrm{ft}\)
Slope Angle, \(\quad \beta=26.0 \mathrm{deg}\)
Density of Soil, \(\quad \gamma_{\mathrm{S}}=130 \mathrm{pcf}\)
Cohesion,
Friction Angle, \(\quad \phi=33 \mathrm{deg}\)
Factor of Safety, F.S. \(=1.50\)

Maximum Width of Slot:

\[
\mathrm{d}=\frac{1 / 3 * \gamma_{\mathrm{s}} * \mathrm{~K}_{\mathrm{o}} * \tan \phi *\left(\mathrm{~h}^{2} *(\mathrm{a}+\mathrm{b})-\mathrm{H}_{\mathrm{c}}^{2} * \mathrm{a}\right)+2 \mathrm{~A} * \mathrm{C}}{(\mathrm{~F} . \mathrm{S} .) * \mathrm{~W} * \sin \alpha * \cos \alpha-\mathrm{W} * \cos ^{2} \alpha * \tan \phi-\mathrm{C} * \mathrm{~b}}
\]

Determination of the components of equation:

Slide plane angle, \(\quad \alpha=56.1 \mathrm{deg} \quad\) (Search for Critical Failure Plane)
Location of Tension Crack \(a=16.0 \mathrm{ft}\)
Length of Wedge, \(\quad \mathrm{b}=8.1 \mathrm{ft}\)
Height of Tension Crack, \(\mathrm{H}_{\mathrm{c}}=15.9 \mathrm{ft}\)
\(\begin{array}{llll}\text { Area of Wedge, } & \mathrm{A}=\mathrm{b} *\left(\mathrm{~h}+\mathrm{H}_{\mathrm{c}}\right) / 2= & 161.5 & \mathrm{ft}^{2} \\ \text { Weight of Wedge, } & \mathrm{W}=\mathrm{A} * \gamma_{\mathrm{s}}= & 20990 & \mathrm{lbs}\end{array}\)
Coef. of latteral pressure, \(\mathrm{K}_{\mathrm{o}}=1-\sin \phi=0.46\)
\[
\mathrm{d}=\frac{1 / 3 * 130 * 0.46 * \tan 33 *(24 * 24 *(16+8.1)-15.9 * 15.9 * 16)+2 * 540 * 161.5}{1.5 * 20989.6 * \sin 56.1 * \cos 56.1-20989.6 * \cos 56.1 * \cos 56.1 * \tan 33-540 * 8.1}
\]
\[
\mathrm{d}=\frac{299988.8}{5967.5}=50.3 \mathrm{ft}
\]

\section*{Maximum Allowable Width of Slot Cuts is 50 Feet}

\section*{TENSION CRACK LOCATION}
(Stability of Temporary Excavations After Installation of Piles)

\section*{DATA:}
\begin{tabular}{lcl} 
Soil Density, & \(\gamma_{\mathrm{s}}=130\) & pcf \\
Cohesion, & \(\mathrm{C}=540\) & psf \\
Friction Angle, & \(\phi=33\) & degrees \\
Surface Angle, & \(\beta=26.0\) & degrees \\
Fail. Plane Angle, & \(\alpha=56.1\) & degrees \\
Height of Cut, & \(\mathrm{h}=24.0\) & ft
\end{tabular}

Factor of Safety, F.S. \(=1.0\)


HEIGHT AND LOCATION OF TENSION CRACK:
Total Length of Block, \(\quad L_{B}=(h * \cos \beta) /(\sin (\alpha-\beta))=43.1 \mathrm{ft}\)
Height of Crack, \(\quad \mathrm{H}_{\mathrm{c}}=\mathrm{C} /\left(\gamma_{\mathrm{s}} * \cos \alpha^{*}\left(\sin \alpha^{*}\right.\right.\) F.S. \(\left.\left.-\cos \alpha * \tan \phi\right)\right)=15.9 \mathrm{ft}\)
Location of Crack, \(\quad a=H_{c} /(\tan \alpha-\tan \beta)=16.0 \mathrm{ft}\)
Location of Crack, \(\quad \mathrm{b}=\mathrm{L}_{\mathrm{B}} * \cos \alpha-\mathrm{H}_{\mathrm{c}} /(\tan \alpha-\tan \beta)=8.1 \mathrm{ft}\)
Length of Failure Plane, \(\quad \mathrm{L}=\mathrm{b} / \cos \alpha=14.5 \mathrm{ft}\)

APPENDIX G

\section*{EQUIVALENT FLUID PRESSURE \\ TYPICAL RETAINING WALL \\ FOR 12 FEET HIGH RETAINING WALL}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Wedge \\
No.
\end{tabular} & Lateral Load from Active Pressure (Single Wedge) (lbs/lf) & Lateral Load from Active Pressure (Accumulated) (lbs/lf) & Equivalent Fluid Pressure psf/ft or pcf \\
\hline 1 & 1,657 & 1,657 & 23.0 \\
\hline \multicolumn{2}{|l|}{EFP calculated for \(\mathrm{H}=\quad 12\)} & & \\
\hline
\end{tabular}
\begin{tabular}{lcll} 
Total Density, \(\gamma_{\mathrm{t}}=\) & 120 & pcf & \\
Saturated Density, \(\gamma_{\mathrm{s}}=\) & 120 & pcf & \\
Water Density, \(\gamma_{\mathrm{w}}=\) & 62.4 & pcf & \\
Friction Angle, \(\phi=\) & 28 & degrees & (Fill) \\
Cohesion, \(\mathrm{C}=\) & 290 & psf & \\
Surface Angle, \(\beta=\) & 0 & degrees & \\
Fail. Plane Angle, \(\alpha=\) & 54.8 & degrees & (Search for Critical Failure Plane)
\end{tabular}

\title{
LATERAL LOAD APPLIED ON BLOCK 1 \\ TYPICAL RETAINING WALL \\ FOR 12 FEET HIGH RETAINING WALL
}

DATA:
Total Density, \(\gamma_{\mathrm{t}}=\)
Saturated Density, \(\gamma_{s}=\)
Water Density, \(\gamma_{w}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Fail. Plane Angle, \(\alpha=\)
Surface Angle, \(\beta=\)
Water Table Angle, \(\delta=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, FS =

120 pcf
120 pcf
62.4 pcf
28.0 degrees

290 psf
54.8 degrees
0.0 degrees
54.8 degrees
9.1 ft
1.5

Mobilized, \(\phi_{\mathrm{m}}=\)
19.5 degrees

Mobilized, \(\mathrm{C}_{\mathrm{m}}=\)


\section*{TENSION CRACK LOCATION TYPICAL RETAINING WALL}

DATA:

Soil Density, \(\gamma_{t}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Surface Angle, \(\beta=\)
Fail. Plane Angle, \(\alpha=\)
Wedge Length, L =
Factor of Safety, F.S.=

120 pcf
28 degrees
290 psf
0.0 degrees
54.8 degrees

15 ft
1.5


HEIGHT AND LOCATION OF TENSION CRACK:
\begin{tabular}{lll} 
Height of Crack, \(\mathrm{H}_{\mathrm{c}}=\) & 4.6 & ft \\
Location of Crack, \(\Delta \mathrm{L}=\) & 3.2 & ft
\end{tabular}

SECTION OF WEDGE ABOVE THE CRACK:
\begin{tabular}{lclrcl} 
Length of Section, \(\mathrm{L}_{1}=\) & 6 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 1}=\) & 720 & lbs \\
Area of Section, \(\mathrm{A}_{1}=\) & 7 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 1}=\) & 271 & lbs \\
Weight of Section, \(\mathrm{W}_{1}=\) & 882 & lbs & Cohesion, \(\mathrm{CL}_{1}=\) & 1,619 & lbs
\end{tabular}

\section*{SECTION OF WEDGE BELOW THE CRACK:}
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{2}=\) & 9 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 2}=\) & 4,265 & lbs \\
Area of Section, \(\mathrm{A}_{2}=\) & 44 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 2}=\) & 1,602 & lbs \\
Weight of Section, \(\mathrm{W}_{2}=\) & 5,222 & lbs & & Cohesion, \(\mathrm{CL}_{2}=\) & 2,641 \\
lbs
\end{tabular}

\title{
PSEUDO-STATIC EQUIVALENT FLUID PRESSURE \\ TYPICAL RETAINING WALL \\ FOR 12 FEET HIGH RETAINING WALL
}
\begin{tabular}{|c|c|c|c|}
\hline Wedge & \begin{tabular}{c} 
Lateral Load from \\
No. \\
Active Pressure \\
(Single Wedge) \\
(lbs/lf)
\end{tabular} & \begin{tabular}{c} 
Lateral Load from \\
Active Pressure \\
(Accumulated) \\
(lbs/lf)
\end{tabular} & \begin{tabular}{c} 
Equivalent \\
Fluid Pressure
\end{tabular} \\
\hline 1 & 1,484 & 1,484 & \(\mathrm{psf} / \mathrm{ft}\) or pcf
\end{tabular}

EFP calculated for \(\mathrm{H}=\quad 12 \mathrm{ft}\)
\begin{tabular}{lcll} 
Total Density, \(\gamma_{\mathrm{t}}=\) & 120 & pcf & \\
Saturated Density, \(\gamma_{\mathrm{s}}=\) & 120 & pcf & \\
Water Density, \(\gamma_{\mathrm{w}}=\) & 62.4 & pcf & \\
Friction Angle, \(\phi=\) & 28 & degrees & (Fill) \\
Cohesion, \(\mathrm{C}=\) & 290 & psf & \\
Surface Angle, \(\beta=\) & 0 & degrees & \\
Fail. Plane Angle, \(\alpha=\) & 53.9 & degrees & (Search for Critical Failure Plane) \\
Required F.S. \(=\) & 1 & & \\
Seismic Forces & Yes & & \\
Coef. of Horiz. Accel. \(=\) & 0.362 & & \(\left(\mathrm{PGA}_{\mathrm{M}}=\right.\) \\
Coef. of Vert. Accel. \(=\) & 0 & &
\end{tabular}

\footnotetext{
* - The Pseudo-Static Earth Pressure Includes Pressures Due to Static and Seismic Forces
}

\section*{LATERAL LOAD APPLIED ON BLOCK 1 \\ TYPICAL RETAINING WALL \\ FOR 12 FEET HIGH RETAINING WALL}

DATA:
Total Density, \(\gamma_{\mathrm{t}}=\)
Saturated Density, \(\gamma_{s}=\)
Water Density, \(\gamma_{w}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Fail. Plane Angle, \(\alpha=\)
Surface Angle, \(\beta=\)
Water Table Angle, \(\delta=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, FS =

120 pcf
120 pcf
62.4 pcf
28.0 degrees

290 psf
53.9 degrees 0.0 degrees
53.9 degrees
4.6 ft
1.0

Coef. of Horiz. Accel. \(=\)
0.362

Coef. of Vert. Accel. =
0

Mobilized, \(\phi_{\mathrm{m}}=\quad 28.0\) degrees
Mobilized, \(\mathrm{C}_{\mathrm{m}}=\quad 290 \mathrm{psf}\)


\section*{1,484 lbs/lf}

\section*{TENSION CRACK LOCATION TYPICAL RETAINING WALL}

DATA:

Soil Density, \(\gamma_{t}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Surface Angle, \(\beta=\)
Fail. Plane Angle, \(\alpha=\)
Wedge Length, L =
Factor of Safety, F.S.=

120 pcf
28 degrees
290 psf
0.0 degrees
53.9 degrees

15 ft
1.0


HEIGHT AND LOCATION OF TENSION CRACK:
Height of Crack, \(\mathrm{H}_{\mathrm{c}}=\quad 8.3 \mathrm{ft}\)

Location of Crack, \(\Delta \mathrm{L}=\)
6.0 ft

SECTION OF WEDGE ABOVE THE CRACK:
\begin{tabular}{lclrcc} 
Length of Section, \(\mathrm{L}_{1}=\) & 10 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 1}=\) & 2,425 & lbs \\
Area of Section, \(\mathrm{A}_{1}=\) & 25 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 1}=\) & 939 & lbs \\
Weight of Section, \(\mathrm{W}_{1}=\) & 3,000 & lbs & Cohesion, \(\mathrm{CL}_{1}=\) & 2,973 & lbs \\
Horizontal Projection of Resulting Force, \(\mathrm{P}_{1}=\) & -875 lbs &
\end{tabular}

\section*{SECTION OF WEDGE BELOW THE CRACK:}
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{2}=\) & 5 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 2}=\) & 2,660 & lbs \\
Area of Section, \(\mathrm{A}_{2}=\) & 27 & \(\mathrm{sq} . \mathrm{ft}\) & & Friction, \(\mathrm{F}_{\mathrm{fr} 2}=\) & 1,030 \\
lbs \\
Weight of Section, \(\mathrm{W}_{2}=\) & 3,291 & lbs & & Cohesion, \(\mathrm{CL}_{2}=\) & 1,332 \\
lbs \\
Horizontal Projection of Resulting Force, \(\mathrm{P}_{2}=\) & 176 lbs & 4sto128RW1-EQ.xls
\end{tabular}

\section*{EQUIVALENT FLUID PRESSURE \\ TYPICAL RETAINING WALL \\ FOR 12 FEET HIGH RETAINING WALL}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Wedge \\
No.
\end{tabular} & Lateral Load from Active Pressure (Single Wedge) (lbs/lf) & Lateral Load from Active Pressure (Accumulated) (lbs/lf) & Equivalent Fluid Pressure psf/ft or pcf \\
\hline 1 & 2,750 & 2,750 & 38.2 \\
\hline \multicolumn{2}{|l|}{EFP calculated for \(\mathrm{H}=\quad 12\)} & & \\
\hline
\end{tabular}
\begin{tabular}{lcll} 
Total Density, \(\gamma_{\mathrm{t}}=\) & 120 & pcf & \\
Saturated Density, \(\gamma_{\mathrm{s}}=\) & 120 & pcf & \\
Water Density, \(\gamma_{\mathrm{w}}=\) & 62.4 & pcf & \\
Friction Angle, \(\phi=\) & 28 & degrees & (Fill) \\
Cohesion, \(\mathrm{C}=\) & 290 & psf & \\
Surface Angle, \(\beta=\) & 26 & degrees & \\
Fail. Plane Angle, \(\alpha=\) & 46.4 & degrees & (Search for Critical Failure Plane)
\end{tabular}

\title{
LATERAL LOAD APPLIED ON BLOCK 1 \\ TYPICAL RETAINING WALL \\ FOR 12 FEET HIGH RETAINING WALL
}

DATA:
Total Density, \(\gamma_{\mathrm{t}}=\)
Saturated Density, \(\gamma_{s}=\)
Water Density, \(\gamma_{w}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Fail. Plane Angle, \(\alpha=\)
Surface Angle, \(\beta=\)
Water Table Angle, \(\delta=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, FS =

120 pcf
120 pcf
62.4 pcf
28.0 degrees

290 psf
46.4 degrees
26.0 degrees
46.4 degrees
18.4 ft
1.5
\(\mathrm{X}=12.7\)
\(\mathrm{Y}=18.2\)
\(\mathrm{X}=12.7\)
\(\mathrm{Y}=13.3\)

\(\mathrm{X}=0.0\)
h
\(\mathrm{X}=12.7\)
\(\mathrm{Y}=13.3\)
\(\mathrm{Y}=13.3\)

THE WEDGE:
Area of Section, \(\mathrm{A}_{1}=\)
107 sq. ft \(\quad X\)
Area of Section, \(\mathrm{A}_{2}=\)
0 sq. ft
Total Area, A =
107 sq. ft
Weight of Soil, \(\mathrm{W}=\) \(12,829 \mathrm{lbs} / \mathrm{lf}\)
Cohesion, \(\mathrm{C}_{\mathrm{m}} \mathrm{L}=\) 3,554 lbs/lf
Uplift Force, \(\mathrm{F}_{\mathrm{w}}=\)
\(0 \mathrm{lbs} / \mathrm{lf}\)

Lateral Load, \(\mathbf{P}_{\mathrm{a}}=\)
2,750 lbs/lf


\section*{TENSION CRACK LOCATION TYPICAL RETAINING WALL}

DATA:

Soil Density, \(\gamma_{\mathrm{t}}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Surface Angle, \(\beta=\)
Fail. Plane Angle, \(\alpha=\)
Wedge Length, L =
Factor of Safety, F.S.=

120 pcf
28 degrees
290 psf
26.0 degrees
46.4 degrees

31 ft
1.5
\(\mathrm{X}=21.3\)
\(\mathrm{Y}=22.4\)
\(\mathrm{X}=21.3\)
\(\mathrm{Y}=22.4\)


HEIGHT AND LOCATION OF TENSION CRACK:
\begin{tabular}{lll} 
Height of Crack, \(\mathrm{H}_{\mathrm{c}}=\) & 4.9 & ft \\
Location of Crack, \(\Delta \mathrm{L}=\) & 8.7 & ft
\end{tabular}

SECTION OF WEDGE ABOVE THE CRACK:
\begin{tabular}{lclrcl} 
Length of Section, \(\mathrm{L}_{1}=\) & 13 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 1}=\) & 1,832 & lbs \\
Area of Section, \(\mathrm{A}_{1}=\) & 21 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{frl}}=\) & 927 & lbs \\
Weight of Section, \(\mathrm{W}_{1}=\) & 2,529 & lbs & Cohesion, \(\mathrm{CL}_{1}=\) & 3,640 & lbs
\end{tabular}

Horizontal Projection of Resulting Force, \(\mathrm{P}_{1}=-1,887 \mathrm{lbs}\)

\section*{SECTION OF WEDGE BELOW THE CRACK:}
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{2}=\) & 18 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 2}=\) & 9,291 & lbs \\
Area of Section, \(\mathrm{A}_{2}=\) & 107 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 2}=\) & 4,704 & lbs \\
Weight of Section, \(\mathrm{W}_{2}=\) & 12,829 & lbs & Cohesion, \(\mathrm{CL}_{2}=\) & 5,331 & lbs \\
Horizontal Projection of Resulting Force, \(\mathrm{P}_{2}=\) & -512 & lbs & 4sto128RW2.xls
\end{tabular}

\title{
PSEUDO-STATIC EQUIVALENT FLUID PRESSURE \\ TYPICAL RETAINING WALL \\ FOR 12 FEET HIGH RETAINING WALL
}
\begin{tabular}{|c|c|c|c|}
\hline Wedge & \begin{tabular}{c} 
Lateral Load from \\
No. \\
Active Pressure \\
(Single Wedge) \\
(lbs/lf)
\end{tabular} & \begin{tabular}{c} 
Lateral Load from \\
Active Pressure \\
(Accumulated) \\
(lbs/lf)
\end{tabular} & \begin{tabular}{c} 
Equivalent \\
Fluid Pressure
\end{tabular} \\
\hline 1 & 2,373 & 2,373 & \(\mathrm{psf} / \mathrm{ft}\) or pcf
\end{tabular}

EFP calculated for \(\mathrm{H}=12 \mathrm{ft}\)
\begin{tabular}{lcll} 
Total Density, \(\gamma_{\mathrm{t}}=\) & 120 & pcf & \\
Saturated Density, \(\gamma_{\mathrm{s}}=\) & 120 & pcf & \\
Water Density, \(\gamma_{\mathrm{w}}=\) & 62.4 & pcf & \\
Friction Angle, \(\phi=\) & 28 & degrees & (Fill) \\
Cohesion, \(\mathrm{C}=\) & 290 & psf & \\
Surface Angle, \(\beta=\) & 26 & degrees & \\
Fail. Plane Angle, \(\alpha=\) & 51.1 & degrees & (Search for Critical Failure Plane) \\
Required F.S. \(=\) & 1 & & \\
Seismic Forces & Yes & & \\
Coef. of Horiz. Accel. \(=\) & 0.362 & & \(\left(\mathrm{PGA}_{\mathrm{M}}=\right.\) \\
Coef. of Vert. Accel. \(=\) & 0 & &
\end{tabular}

\footnotetext{
* - The Pseudo-Static Earth Pressure Includes Pressures Due to Static and Seismic Forces
}

\section*{LATERAL LOAD APPLIED ON BLOCK 1 \\ TYPICAL RETAINING WALL \\ FOR 12 FEET HIGH RETAINING WALL}

DATA:
Total Density, \(\gamma_{\mathrm{t}}=\)
Saturated Density, \(\gamma_{s}=\)
Water Density, \(\gamma_{\mathrm{w}}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Fail. Plane Angle, \(\alpha=\)
Surface Angle, \(\beta=\)
Water Table Angle, \(\delta=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, FS =

120 pcf
120 pcf
62.4 pcf
28.0 degrees

290 psf
51.1 degrees
26.0 degrees
51.1 degrees
7.1 ft
1.0
\(\mathrm{X}=4.4\)
\(\mathrm{Y}=14.2\)
\(\mathrm{X}=4.4\)
\(\mathrm{Y}=5.5\)
\(X=4.4\)
\(Y=5.5\)

THE WEDGE:
Area of Section, \(\mathrm{A}_{1}=\)
Area of Section, \(\mathrm{A}_{2}=\)
Total Area, A =
Weight of Soil, \(\mathrm{W}=\) 5,507 lbs/lf
Cohesion, \(\mathrm{C}_{\mathrm{m}} \mathrm{L}=\) 2,052 lbs/lf
Uplift Force, \(\mathrm{F}_{\mathrm{w}}=\)
Horiz. Seism. Force, \(\mathrm{F}_{\mathrm{Heq}}=1,993 \mathrm{lbs} / \mathrm{lf}\)
Vert. Seism. Force, \(\mathrm{F}_{\mathrm{Veq}}=\quad 0 \mathrm{lbs} / \mathrm{lf}\)

Coef. of Horiz. Accel. =
0.362

Coef. of Vert. Accel. =
0

Mobilized, \(\phi_{\mathrm{m}}=\quad 28.0\) degrees
Mobilized, \(\mathrm{C}_{\mathrm{m}}=\quad 290 \mathrm{psf}\)

\section*{TENSION CRACK LOCATION TYPICAL RETAINING WALL}

DATA:

Soil Density, \(\gamma_{\mathrm{t}}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Surface Angle, \(\beta=\)
Fail. Plane Angle, \(\alpha=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, F.S.=

120 pcf
28 degrees
290 psf
26.0 degrees
51.1 degrees

25 ft
1.0


HEIGHT AND LOCATION OF TENSION CRACK:
\begin{tabular}{lcc} 
Height of Crack, \(\mathrm{H}_{\mathrm{c}}=\) & 8.7 & ft
\end{tabular}

Location of Crack, \(\Delta \mathrm{L}=11.5 \mathrm{ft}\)

SECTION OF WEDGE ABOVE THE CRACK:
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{1}=\) & 18 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 1}=\) & 4,657 & lbs \\
Area of Section, \(\mathrm{A}_{1}=\) & 50 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 1}=\) & 1,997 & lbs \\
Weight of Section, \(\mathrm{W}_{1}=\) & 5,983 & lbs & Cohesion, \(\mathrm{CL}_{1}=\) & 5,319 & lbs
\end{tabular}

Horizontal Projection of Resulting Force, \(\mathrm{P}_{1}=-1,670 \mathrm{lbs}\)

\section*{SECTION OF WEDGE BELOW THE CRACK:}
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{2}=\) & 7 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 2}=\) & 4,286 & lbs \\
Area of Section, \(\mathrm{A}_{2}=\) & 46 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 2}=\) & 1,838 & lbs \\
Weight of Section, \(\mathrm{W}_{2}=\) & 5,507 & lbs & Cohesion, \(\mathrm{CL}_{2}=\) & 2,052 & lbs \\
Horizontal Projection of Resulting Force, \(\mathrm{P}_{2}=\) & 249 & lbs & 4sto128RW2-EQ.xls
\end{tabular}

\section*{EQUIVALENT FLUID PRESSURE \\ TYPICAL RETAINING WALL \\ FOR 24 FEET HIGH RETAINING WALL}
\begin{tabular}{|c|c|c|c|}
\hline Wedge No. & Lateral Load from Active Pressure (Single Wedge) (lbs/lf) & Lateral Load from Active Pressure (Accumulated) (lbs/lf) & Equivalent Fluid Pressure \(\mathrm{psf} / \mathrm{ft}\) or pcf \\
\hline 1 & 6,794 & 6,794 & 23.6 \\
\hline \multicolumn{2}{|l|}{EFP calculated for \(\mathrm{H}=\)} & & \\
\hline
\end{tabular}
\begin{tabular}{lcll} 
Total Density, \(\gamma_{\mathrm{t}}=\) & 130 & pcf & \\
Saturated Density, \(\gamma_{\mathrm{s}}=\) & 130 & pcf & \\
Water Density, \(\gamma_{\mathrm{w}}=\) & 62.4 & pcf & \\
Friction Angle, \(\phi=\) & 33 & degrees & (Bedrock) \\
Cohesion, \(\mathrm{C}=\) & 540 & psf & \\
Surface Angle, \(\beta=\) & 0 & degrees & \\
Fail. Plane Angle, \(\alpha=\) & 56.7 & degrees & (Search for Critical Failure Plane)
\end{tabular}

\title{
LATERAL LOAD APPLIED ON BLOCK 1 \\ TYPICAL RETAINING WALL \\ FOR 24 FEET HIGH RETAINING WALL
}

DATA:
Total Density, \(\gamma_{\mathrm{t}}=\)
Saturated Density, \(\gamma_{s}=\)
Water Density, \(\gamma_{w}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Fail. Plane Angle, \(\alpha=\)
Surface Angle, \(\beta=\)
Water Table Angle, \(\delta=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, FS =

130 pcf
130 pcf
62.4 pcf
33.0 degrees

540 psf
56.7 degrees
0.0 degrees
56.7 degrees
18.6 ft
1.5

Mobilized, \(\phi_{\mathrm{m}}=\)
23.4 degrees

Mobilized, \(\mathrm{C}_{\mathrm{m}}=\)


\section*{TENSION CRACK LOCATION TYPICAL RETAINING WALL}

DATA:

Soil Density, \(\gamma_{t}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Surface Angle, \(\beta=\)
Fail. Plane Angle, \(\alpha=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, F.S.=

130 pcf
33 degrees
540 psf
0.0 degrees
56.7 degrees

29 ft
1.5


HEIGHT AND LOCATION OF TENSION CRACK:
\begin{tabular}{lll} 
Height of Crack, \(\mathrm{H}_{\mathrm{c}}=\) & 8.4 & ft \\
Location of Crack, \(\Delta \mathrm{L}=\) & 5.5 & ft
\end{tabular}

SECTION OF WEDGE ABOVE THE CRACK:
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{1}=\) & 10 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 1}=\) & 2,538 & lbs \\
Area of Section, \(\mathrm{A}_{1}=\) & 23 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 1}=\) & 1,082 & lbs \\
Weight of Section, \(\mathrm{W}_{1}=\) & 3,036 & lbs & Cohesion, \(\mathrm{CL}_{1}=\) & 5,448 & lbs
\end{tabular}

Horizontal Projection of Resulting Force, \(\mathrm{P}_{1}=-2,192 \mathrm{lbs}\)

\section*{SECTION OF WEDGE BELOW THE CRACK:}
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{2}=\) & 19 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 2}=\) & 18,015 & lbs \\
Area of Section, \(\mathrm{A}_{2}=\) & 166 & \(\mathrm{sq} . \mathrm{ft}\) & & Friction, \(\mathrm{F}_{\mathrm{fr} 2}=\) & 7,684 \\
lbs \\
Weight of Section, \(\mathrm{W}_{2}=\) & 21,553 & lbs & & Cohesion, \(\mathrm{CL}_{2}=\) & 10,057 \\
lbs & lbs \\
Horizontal Projection of Resulting Force, \(\mathrm{P}_{2}=\) & 151 & lbs & 4sto128RW3.xls
\end{tabular}

\title{
PSEUDO-STATIC EQUIVALENT FLUID PRESSURE \\ TYPICAL RETAINING WALL \\ FOR 24 FEET HIGH RETAINING WALL
}
\begin{tabular}{|c|c|c|c|}
\hline Wedge No. & Lateral Load from Active Pressure (Single Wedge) (lbs/lf) & Lateral Load from Active Pressure (Accumulated) (lbs/lf) & Equivalent Fluid Pressure psf/ft or pcf \\
\hline 1 & 6,318 & 6,318 & 21.9 \\
\hline \multicolumn{2}{|l|}{EFP calculated for \(\mathrm{H}=\quad 24\)} & & \\
\hline
\end{tabular}
\begin{tabular}{lcll} 
Total Density, \(\gamma_{\mathrm{t}}=\) & 130 & pcf & \\
Saturated Density, \(\gamma_{\mathrm{s}}=\) & 130 & pcf & \\
Water Density, \(\gamma_{\mathrm{w}}=\) & 62.4 & pcf & \\
Friction Angle, \(\phi=\) & 33 & degrees & (Bedrock) \\
Cohesion, \(\mathrm{C}=\) & 540 & psf & \\
Surface Angle, \(\beta=\) & 0 & degrees & \\
Fail. Plane Angle, \(\alpha=\) & 56.4 & degrees & (Search for Critical Failure Plane) \\
Required F.S. \(=\) & 1 & & \\
Seismic Forces & Yes & & \\
Coef. of Horiz. Accel. \(=\) & 0.362 & & \(\left(\mathrm{PGA}_{\mathrm{M}}=\right.\) \\
Coef. of Vert. Accel. \(=\) & 0 & & 1.086
\end{tabular}

\footnotetext{
* - The Pseudo-Static Earth Pressure Includes Pressures Due to Static and Seismic Forces
}

\section*{LATERAL LOAD APPLIED ON BLOCK 1 \\ TYPICAL RETAINING WALL \\ FOR 24 FEET HIGH RETAINING WALL}

DATA:
Total Density, \(\gamma_{\mathrm{t}}=\)
Saturated Density, \(\gamma_{s}=\)
Water Density, \(\gamma_{w}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Fail. Plane Angle, \(\alpha=\)
Surface Angle, \(\beta=\)
Water Table Angle, \(\delta=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, FS =

130 pcf
130 pcf
62.4 pcf
33.0 degrees

540 psf
56.4 degrees
0.0 degrees
56.4 degrees
9.8 ft
1.0

Coef. of Horiz. Accel. =
0.362

Coef. of Vert. Accel. =
0

Mobilized, \(\phi_{\mathrm{m}}=\quad 33.0\) degrees
Mobilized, \(\mathrm{C}_{\mathrm{m}}=\quad 540 \mathrm{psf}\)
\(\mathrm{X}=5.4\)
\(\mathrm{Y}=24.0\)
\(\mathrm{X}=5.4\)
\(\mathrm{Y}=8.1\)
\(\mathrm{X}=5.4\)
\(\mathrm{Y}=8.1\)

THE WEDGE:
Area of Section, \(\mathrm{A}_{1}=\)


Area of Section, \(\mathrm{A}_{2}=\)
Total Area, A =
Weight of Soil, \(\mathrm{W}=\)
\(14,032 \mathrm{lbs} / \mathrm{lf}\)
Cohesion, \(\mathrm{C}_{\mathrm{m}} \mathrm{L}=\) 5,280 lbs/lf
Uplift Force, \(\mathrm{F}_{\mathrm{w}}=\)
\(0 \mathrm{lbs} / \mathrm{lf}\)
Horiz. Seism. Force, \(\mathrm{F}_{\mathrm{Heq}}=\quad 5,079 \mathrm{lbs} / \mathrm{lf}\)
Vert. Seism. Force, \(\mathrm{F}_{\mathrm{Veq}}=\quad 0 \mathrm{lbs} / \mathrm{lf}\)


Lateral Load, \(\mathbf{P}_{\mathrm{a}}=\)
6,318 lbs/lf

\section*{TENSION CRACK LOCATION TYPICAL RETAINING WALL}

DATA:

Soil Density, \(\gamma_{\mathrm{t}}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Surface Angle, \(\beta=\)
Fail. Plane Angle, \(\alpha=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, F.S.=

130 pcf
33 degrees
540 psf
0.0 degrees
56.4 degrees

29 ft
1.0


HEIGHT AND LOCATION OF TENSION CRACK:
Height of Crack, \(\mathrm{H}_{\mathrm{c}}=15.9 \mathrm{ft}\)
Location of Crack, \(\Delta \mathrm{L}=10.5 \mathrm{ft}\)

SECTION OF WEDGE ABOVE THE CRACK:
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{1}=\) & 19 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 1}=\) & 9,054 & lbs \\
Area of Section, \(\mathrm{A}_{1}=\) & 84 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 1}=\) & 3,911 & lbs \\
Weight of Section, \(\mathrm{W}_{1}=\) & 10,874 & lbs & Cohesion, \(\mathrm{CL}_{1}=\) & 10,285 & lbs
\end{tabular}

Horizontal Projection of Resulting Force, \(\mathrm{P}_{1}=-2,848 \mathrm{lbs}\)

\section*{SECTION OF WEDGE BELOW THE CRACK:}
\(\left.\begin{array}{lclrll}\text { Length of Section, } \mathrm{L}_{2}= & 10 & \mathrm{ft} & \text { Driving Force, } \mathrm{W}_{\mathrm{D} 2}= & 11,683 & \mathrm{lbs} \\
\text { Area of Section, } \mathrm{A}_{2}= & 108 & \mathrm{sq} . \mathrm{ft} & & \text { Friction, } \mathrm{F}_{\mathrm{fr} 2}= & 5,047 \\
\text { lbs }\end{array}\right]\)\begin{tabular}{lllll} 
Weight of Section, \(\mathrm{W}_{2}=\) & 14,032 & lbs & & Cohesion, \(\mathrm{CL}_{2}=\) \\
5,280 & lbs \\
Horizontal Projection of Resulting Force, \(\mathrm{P}_{2}=\) & 751 & lbs & 4sto128RW3-EQ.xls
\end{tabular}

\title{
EQUIVALENT FLUID PRESSURE \\ TYPICAL RETAINING WALL \\ FOR 24 FEET HIGH RETAINING WALL
}
\begin{tabular}{|c|c|c|c|}
\hline Wedge No. & Lateral Load from Active Pressure (Single Wedge) (lbs/lf) & Lateral Load from Active Pressure (Accumulated) (lbs/lf) & Equivalent Fluid Pressure \(\mathrm{psf} / \mathrm{ft}\) or pcf \\
\hline 1 & 10,632 & 10,632 & 36.9 \\
\hline \multicolumn{2}{|l|}{EFP calculated for \(\mathrm{H}=\)} & & \\
\hline
\end{tabular}
\begin{tabular}{lcll} 
Total Density, \(\gamma_{\mathrm{t}}=\) & 130 & pcf & \\
Saturated Density, \(\gamma_{\mathrm{s}}=\) & 130 & pcf & \\
Water Density, \(\gamma_{\mathrm{w}}=\) & 62.4 & pcf & \\
Friction Angle, \(\phi=\) & 33 & degrees & (Bedrock) \\
Cohesion, \(\mathrm{C}=\) & 540 & psf & \\
Surface Angle, \(\beta=\) & 26 & degrees & \\
Fail. Plane Angle, \(\alpha=\) & 50.0 & degrees & (Search for Critical Failure Plane)
\end{tabular}

\title{
LATERAL LOAD APPLIED ON BLOCK 1 \\ TYPICAL RETAINING WALL \\ FOR 24 FEET HIGH RETAINING WALL
}

DATA:
Total Density, \(\gamma_{\mathrm{t}}=\)
Saturated Density, \(\gamma_{s}=\)
Water Density, \(\gamma_{w}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Fail. Plane Angle, \(\alpha=\) Surface Angle, \(\beta=\)
Water Table Angle, \(\delta=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, FS =

130 pcf
130 pcf
62.4 pcf
33.0 degrees

540 psf
50.0 degrees
26.0 degrees
50.0 degrees
33.5 ft
1.5

Mobilized, \(\phi_{\mathrm{m}}=\)
23.4 degrees

Mobilized, \(\mathrm{C}_{\mathrm{m}}=\)
\(\mathrm{X}=21.5\)
\(\mathrm{Y}=34.5\)
\(\mathrm{X}=21.5\)
\[
Y=25.7
\]


\section*{TENSION CRACK LOCATION TYPICAL RETAINING WALL}

DATA:

Soil Density, \(\gamma_{t}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Surface Angle, \(\beta=\)
Fail. Plane Angle, \(\alpha=\)
Wedge Length, L =
Factor of Safety, F.S.=

130 pcf
33 degrees
540 psf
26.0 degrees
50.0 degrees

53 ft
1.5


HEIGHT AND LOCATION OF TENSION CRACK:
Height of Crack, \(\mathrm{H}_{\mathrm{c}}=8.8 \mathrm{ft}\)
Location of Crack, \(\Delta \mathrm{L}=12.5 \mathrm{ft}\)

SECTION OF WEDGE ABOVE THE CRACK:
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{1}=\) & 20 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 1}=\) & 5,519 & lbs \\
Area of Section, \(\mathrm{A}_{1}=\) & 55 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 1}=\) & 3,008 & lbs \\
Weight of Section, \(\mathrm{W}_{1}=\) & 7,205 & lbs & Cohesion, \(\mathrm{CL}_{1}=\) & 10,542 & lbs
\end{tabular}

Horizontal Projection of Resulting Force, \(\mathrm{P}_{1}=-5,162 \mathrm{lbs}\)
SECTION OF WEDGE BELOW THE CRACK:
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{2}=\) & 34 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 2}=\) & 35,226 & lbs \\
Area of Section, \(\mathrm{A}_{2}=\) & 354 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 2}=\) & 19,198 & lbs \\
Weight of Section, \(\mathrm{W}_{2}=\) & 45,987 & lbs & Cohesion, \(\mathrm{CL}_{2}=\) & 18,101 & lbs \\
Horizontal Projection of Resulting Force, \(\mathrm{P}_{2}=\) & \(-1,332 \mathrm{lbs}\) & 4sto128RW4.xls
\end{tabular}

\title{
PSEUDO-STATIC EQUIVALENT FLUID PRESSURE \\ TYPICAL RETAINING WALL \\ FOR 24 FEET HIGH RETAINING WALL
}
\begin{tabular}{|c|c|c|c|}
\hline Wedge No. & Lateral Load from Active Pressure (Single Wedge) (lbs/lf) & Lateral Load from Active Pressure (Accumulated) (lbs/lf) & Equivalent Fluid Pressure psf/ft or pcf \\
\hline 1 & 9,572 & 9,572 & 33.2 \\
\hline \multicolumn{2}{|l|}{EFP calculated for \(\mathrm{H}=\quad 24\)} & & \\
\hline
\end{tabular}
\begin{tabular}{lcll} 
Total Density, \(\gamma_{\mathrm{t}}=\) & 130 & pcf & \\
Saturated Density, \(\gamma_{\mathrm{s}}=\) & 130 & pcf & \\
Water Density, \(\gamma_{\mathrm{w}}=\) & 62.4 & pcf & \\
Friction Angle, \(\phi=\) & 33 & degrees & (Bedrock) \\
Cohesion, \(\mathrm{C}=\) & 540 & psf & \\
Surface Angle, \(\beta=\) & 26 & degrees & \\
Fail. Plane Angle, \(\alpha=\) & 54.0 & degrees & (Search for Critical Failure Plane) \\
Required F.S. \(=\) & 1 & & \\
Seismic Forces & Yes & & \\
Coef. of Horiz. Accel. \(=\) & 0.362 & & \(\left(\mathrm{PGA}_{\mathrm{M}}=\right.\) \\
Coef. of Vert. Accel. \(=\) & 0 & &
\end{tabular}

\footnotetext{
* - The Pseudo-Static Earth Pressure Includes Pressures Due to Static and Seismic Forces
}

\section*{LATERAL LOAD APPLIED ON BLOCK 1 \\ TYPICAL RETAINING WALL \\ FOR 24 FEET HIGH RETAINING WALL}

DATA:
Total Density, \(\gamma_{\mathrm{t}}=\)
Saturated Density, \(\gamma_{s}=\)
Water Density, \(\gamma_{\mathrm{w}}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Fail. Plane Angle, \(\alpha=\)
Surface Angle, \(\beta=\)
Water Table Angle, \(\delta=\)
Wedge Length, \(\mathrm{L}=\)
Factor of Safety, FS =

130 pcf
130 pcf
62.4 pcf
33.0 degrees

540 psf
54.0 degrees
26.0 degrees
54.0 degrees
14.3 ft
1.0
\(\mathrm{X}=8.4\)
\(\mathrm{Y}=28.1\)
\(\mathrm{X}=8.4\)
\(\mathrm{Y}=11.5\)
\(\mathrm{X}=8.4\)
\(\mathrm{Y}=11.5\)

THE WEDGE:
Area of Section, \(\mathrm{A}_{1}=\)

Area of Section, \(\mathrm{A}_{2}=\)
Total Area, A =
Weight of Soil, \(\mathrm{W}=\)
Cohesion, \(\mathrm{C}_{\mathrm{m}} \mathrm{L}=\)
Uplift Force, \(\mathrm{F}_{\mathrm{w}}=\)
Horiz. Seism. Force, \(\mathrm{F}_{\mathrm{Heq}}=\)
Vert. Seism. Force, \(\mathrm{F}_{\mathrm{Veq}}=\)
Lateral Load, \(\mathbf{P}_{\mathrm{a}}=\)


Coef. of Horiz. Accel. \(=\)
0.362

Coef. of Vert. Accel. =
0

Mobilized, \(\phi_{\mathrm{m}}=\quad 33.0\) degrees
Mobilized, \(\mathrm{C}_{\mathrm{m}}=\)
540 psf

\section*{TENSION CRACK LOCATION TYPICAL RETAINING WALL}

DATA:

Soil Density, \(\gamma_{t}=\)
Friction Angle, \(\phi=\)
Cohesion, \(\mathrm{C}=\)
Surface Angle, \(\beta=\)
Fail. Plane Angle, \(\alpha=\)
Wedge Length, L =
Factor of Safety, F.S.=

130 pcf
33 degrees
540 psf
26.0 degrees
54.0 degrees

46 ft
1.0


HEIGHT AND LOCATION OF TENSION CRACK:
Height of Crack, \(\mathrm{H}_{\mathrm{c}}=16.6 \mathrm{ft}\)
Location of Crack, \(\Delta \mathrm{L}=18.7 \mathrm{ft}\)
SECTION OF WEDGE ABOVE THE CRACK:
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{1}=\) & 32 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 1}=\) & 16,240 & lbs \\
Area of Section, \(\mathrm{A}_{1}=\) & 154 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{frl}}=\) & 7,673 & lbs \\
Weight of Section, \(\mathrm{W}_{1}=\) & 20,083 & lbs & Cohesion, \(\mathrm{CL}_{1}=\) & 17,133 & lbs
\end{tabular}

Horizontal Projection of Resulting Force, \(\mathrm{P}_{1}=-5,040 \mathrm{lbs}\)

\section*{SECTION OF WEDGE BELOW THE CRACK:}
\begin{tabular}{lclrll} 
Length of Section, \(\mathrm{L}_{2}=\) & 14 & ft & Driving Force, \(\mathrm{W}_{\mathrm{D} 2}=\) & 17,903 & lbs \\
Area of Section, \(\mathrm{A}_{2}=\) & 170 & \(\mathrm{sq} . \mathrm{ft}\) & Friction, \(\mathrm{F}_{\mathrm{fr} 2}=\) & 8,459 & lbs \\
Weight of Section, \(\mathrm{W}_{2}=\) & 22,140 & lbs & Cohesion, \(\mathrm{CL}_{2}=\) & 7,710 & lbs \\
Horizontal Projection of Resulting Force, \(\mathrm{P}_{2}=\) & 1,020 & lbs & 4sto128RW4-EQ.xls
\end{tabular}

APPENDIX H

\title{
DETERMINATION OF SEISMIC COEFFICIENT
}

Input Data:
\begin{tabular}{llc} 
Peak Ground Acceleration & \(\mathrm{PGA}_{\mathrm{M}}=\) & 1.086 \\
Magnitude & \(\mathrm{M}=\) & 6.6 \\
Threshold & \(\mathrm{u}=\) & 5 cm \\
Distance & \(\mathrm{r}=\) & 3.9 km
\end{tabular}

Analysis:
\begin{tabular}{lcr} 
Peak Ground Acceleration & PGA \(=\) & 0.724 \\
Duration of Shaking for \(\mathrm{r}<10 \mathrm{D}_{5-95}=\) & 10.072 \\
Non Linear Response Factor & NRF \(=\) & 0.803 \\
Site Seismicity Factor & \(\mathrm{f}_{\text {eq }}=\) & 0.448 \\
Seismic Coefficient & \(\mathrm{k}_{\text {eq }}=\) & 0.324
\end{tabular}```


[^0]:    T = Tube Sample

[^1]:    T = Tube Sample

[^2]:    T = Tube Sample

[^3]:    T = Tube Sample

[^4]:    T = Tube Sample

[^5]:    T = Tube Sample

[^6]:    T = Tube Sample

[^7]:    T = Tube Sample

[^8]:    T = Tube Sample

[^9]:    T = Tube Sample

[^10]:    T = Tube Sample

[^11]:    T = Tube Sample, G = Grab Sample

[^12]:    T = Tube Sample

[^13]:    T = Tube Sample

[^14]:    T = Tube Sample

[^15]:    T = Tube Sample

[^16]:    T = Tube Sample

[^17]:    T = Tube Sample

[^18]:    T = Tube Sample

[^19]:    T = Tube Sample, G= Grab Sample

[^20]:    T = Tube Sample, G= Grab Sample

[^21]:    T = Tube Sample

[^22]:    T = Tube Sample, G= Grab Sample

[^23]:    T = Tube Sample, G= Grab Sample

[^24]:    T＝Tube Sample，G＝Grab Sample

[^25]:    T = Tube Sample, G= Grab Sample

[^26]:    T = Tube Sample, G= Grab Sample

[^27]:    T = Tube Sample, G= Grab Sample

[^28]:    T = Tube Sample, G= Grab Sample

[^29]:    T = Tube Sample, G= Grab Sample

[^30]:    T = Tube Sample, G= Grab Sample

[^31]:    T = Tube Sample

[^32]:    T = Tube Sample

[^33]:    T = Tube Sample, G= Grab Sample

