Appendix F Hydrology Study

HYDROLOGY STUDY FOR

TRACT 8943 HAVERHILL DRIVE GLASSELL PARK

LOS ANGELES, CALIFORNIA

Prepared For: Glassell Park, LLC 23622 Calabasas Road, Suite 220 Calabasas, CA 91302 Tel: (818) 222-2530

January 29, 2015

Prepared by: **Unite Civil, Inc.** 30141 Agoura Road, Suite 215 Agoura Hills, CA 91301-4311 Tel: (818) 707-8648 Fax: (818) 707-8649

TABLE OF CONTENTS

Introduction	Page 1
Purpose of Study	Page 1
Existing Condition Hydrology	Page 2
Proposed Condition Hydrology	Page 3
Proposed Condition Hydraulics	Page 3
Low Impact Development (LID)	Page 4
Conclusion	Page 4
Existing Condition Hydrology (Table Summary)	Page 4
Proposed Condition Hydrology (Table Summary)	Page 5
Proposed Grate Inlets (Table Summary)	Page 6
Proposed SD Pipes (Table Summary)	Page 6
Proposed Concrete Channels (Table Summary)	Page 7
Existing Capacity For Division St. (Table Summary)	Page 8
Existing Capacity For 27-inch RCP Lateral	Page 8

Attachment A: Hydrology Calculations Per LA County's HydroCalc

Existing Condition (10-yr, 25-yr, 50-yr)

Proposed Condition (10-yr, 25-yr, 50-yr)

Attachment B: Hydraulic Calculations Per Bentley's FlowMaster

Proposed Grate Inlets

Proposed SD Pipes

Proposed Concrete Channels

Existing Capacity for Division St.

I. Introduction

The proposed development is located on Haverhill Dr. in the City of Los Angeles, CA. It is owned by Glassell Park, LLC and it is a development of the remaining undeveloped lots of Tract No. 8943. The site is situated between Division St. and Loveland Dr. The proposed development is a single family housing and consists of 32 lots. These lots include lot numbers 118-126, 132-134, 153-161, 190-193, and 226-232 of Tract No 8943. The development also includes the road shown on the tract map where existing Haverhill Dr. will be extended towards Loveland Dr. Sundown Dr. and Brilliant Way will also both be extended to connect to the new Haverhill road. The project size is approximately 5.20 acres.

II. Purpose of Study

The main purposes of this drainage study are:

- 1) To determine the design peak 50-year frequency storm runoff for project site and its tributary frontage streets, and the corresponding 10-year and 25-year frequency storm runoffs in the existing pre-developed condition and in the proposed developed condition;
- 2) To determine the required size for the proposed storm drain system including grate inlets, pipe sizes, and concrete channels.
- 3) To determine the hydraulic capacities of the existing street (Division St.), and the existing 27 inch catch basin lateral located at the intersection of Division St. and Jessica Dr. Said storm drain systems are runoff discharge locations for the proposed development. Verifying the existing capacity for both systems will determine if they are capable of accommodating the storm water runoff from the proposed development. If existing runoff capacities are higher than the proposed sum of the 50-year storm runoff of all tributary areas then the proposed system works and doesn't need modification. However, if the existing runoff capacities are lower, the proposed storm drain systems needs to be modified to ensure that runoff discharging into both systems does not exceed their capacity.

III. Existing Condition Hydrology

The total Tributary Area for the existing hydrology condition of the site is approximately 20.87 acres, of which 5.20 acres comprises the project area. The project site is located on a hillside with an approximate elevation difference of 100 ft. Drainage is through natural drain from the west to east portion of the site. Storm water runoff from the northern portion of the site is observed to be sheet flowing into an existing 24" concrete channel that extends from the adjacent lot down to Division St. See attached "Existing Drainage-Photo Exhibit" for location and photos of the existing channel.

The southern portion of the site, storm water runoff is observed to be sheet flowing to the lower adjacent lots through an existing ribbon gutter. The ribbon gutter is connected to a drain inlet with a 6" diameter outlet. See attached "Existing Drainage-Photo Exhibit" for location and photos of the outlet.

The project site's total runoff is ultimately discharged into Division St. and collected through the nearest storm drain system, an existing street catch basin inlet with a 27-inch RCP lateral. It is located southeast of the project site at the intersection of Jessica Dr. and Division St. See attached "Existing Hydrology Map" for more information.

Based on topography and existing drainage maps, the current site is observed to be divided into six tributary areas that are mostly undeveloped.

IV. Proposed Condition Hydrology

The proposed condition is divided into eleven (11) tributary areas, which four (4) areas (E, F, H, I) will remain undisturbed. The total Tributary Area for the proposed hydrology condition is 20.88 acres of which 5.20 acres comprises the proposed project development.

Except for area E, F, H, I storm water runoff from the tributary areas will be collected through street grate inlets and discharge into Division St. Thirteen (13) grate inlets are proposed to collect all water runoff from all the tributary areas. A 24-inch RCP is proposed to collect the water from the grate inlets into two discharge locations on Division St. These two discharge locations are situated near the north and south portion of the property.

The proposed development creates an increase in impervious ratio from 16 to 40 percent of the total tributary area.

V. Proposed Condition Hydraulics

Storm water for the proposed development would be collected through thirteen (13) proposed grate inlets and into the two 24" RCP main where both are connected to concrete channels.

Storm water runoff from the northern portion of the project site will discharge through a proposed 24-inch RCP into an existing 24 inch wide concrete channel. The existing channel was constructed to include some storm water runoff from the proposed development. The existing channel extends from an adjacent lot, below lot 119, down to Division St. See attached "Existing Drainage-Photo Exhibit" for location and photos of the existing channel.

Runoff from the south portion of the site is collected through a proposed 24-inch RCP into a proposed 30 inch wide concrete channel. The existing 6-inch diameter outlet is observed to be insufficient for the proposed project's peak flowrate therefore it will be removed and replaced with the proposed concrete channel. The channel will be placed within the existing 10-foot sewer and storm drain easement. Any existing improvement within the existing easement will be demolished and removed. A 24-inch RCP will connect to the concrete channel to collect runoff from the proposed development. The channel extends down to Division St., where a parkway drain is proposed to discharge water into a curb and gutter into Division St.

Total storm water runoff from the project site ultimately discharge into an existing street catch basin inlet on Division Street, located at the intersection of Jessica Dr.

See attached "Proposed Hydrology Map" for more information.

VI. Low Impact Development (LID)

See Low Impact Development (LID) Report.

VII. Conclusion

Based on the Los Angeles County Hydrology Map, <u>http://dpw.lacounty.gov/wrd/hydrologygis/</u>, the project site is located in the Soil Classification Area 2 with a 50-yr 24-hour isohyet of 6.6 inches of rainfall.

Below are table summaries of the hydrology results for each tributary area calculated from the *County of Los Angeles Public Work's HydroCalc* software. See attached calculation printout for more details.

Tributary Area	Area (Ac)	Impervious (%)	Pervious (%)	Q ₁₀ (cfs)	Q ₂₅ (cfs)	Q50 (cfs)
А	2.31	29	71	5.73	7.16	8.23
В	3.39	18	82	7.62	10.50	12.08
С	10.45	10	90	16.25	22.57	27.62
D	2.60	6.21	93.79	6.41	8.05	9.28
E	0.73	100	0	1.22	1.64	1.96
F	1.39	9.58	90.42	3.43	4.30	4.96
TOTAL	20.87					64.13
G (Off-site)	9.21	5	95	14.26	19.85	24.32

EXISTING CONDITION HYDROLOGY

See attached calculation printout for more details.

Tributary	Developme	Area	Impervious	Pervious	Q10	Q25	Q50
Area	nt	(Ac)	(%)	(%)	(cfs)	(cfs)	(cfs)
	Туре						
А	Disturbed	1.78	43.8	56.2	4.43	5.52	6.33
В	Disturbed	3.41	65.2	34.8	7.81	10.59	12.11
C	Disturbed	1.08	21.5	78.5	2.67	3.35	3.85
D	Disturbed	4.08	63	37	7.27	9.50	11.53
E	Undisturbed	2.67	5	95	6.58	8.26	9.53
F	Undisturbed	2.60	6.21	93.79	6.41	8.05	9.28
G	Disturbed	1.12	48	52	2.79	3.47	3.98
Н	Undisturbed	1.39	9.58	90.42	3.43	4.30	3.43
Ι	Undisturbed	0.73	100	0	1.22	1.64	1.96
J	Disturbed	0.82	40	60	2.04	2.54	2.92
K	Disturbed	1.20	2	98	2.95	3.71	4.28
TOTAL		20.88					69.20
L (Off-	Undisturbed	9.21	5	95	14.26	19.85	24.32
site)							

PROPOSED CONDITION HYDROLOGY

Below are table summaries of the hydraulic results for all proposed storm drain system calculated from the *Bentley's FlowMaster* software. See attached calculation printout for more details.

Grate	Contributing	Area	Q10	Total Flow	Grate Inlet	Flow Bypass
Inlet (GI)	Tributary	(ac)	(cfs)	$(Q_{10} +$	Full Capacity	to
	Subarea(s)			QUPSTREAM	(cfs)	downstream
				BYPASS)		GI (cfs)
GI-1	B1	1.83	4.19	4.19	5.75	0
GI-2	B2	1.43	3.27	3.27	3.27	0
GI-3	B3	0.11	0.25	0.25	0.25	0
GI-4	B4	0.04	0.10	0.10	3.90	0
GI-5	D1	1.71	3.05	3.05	3.30	0
GI-6	D2	0.79	1.41	1.41	2.15	0
GI-7	D3	0.34	0.61	0.61	1.70	0
GI-8	D6	0.12	0.21	0.21	0.50	0
GI-9	D5	0.09	0.16	0.16	0.70	0
GI-10	D4	0.53	0.94	0.94	0.94	0
GI-11	D7	0.50	0.89	0.89	0.90	0
GI-12	G1	0.49	1.22	1.22	1.50	0
GI-13	G2	0.03	0.08	0.08	0.08	0

PROPOSED GRATE INLETS

PROPOSED SD PIPES

Pipe Location	Contributing Tributary	Q ₅₀ (cfs)	Proposed Pipe Size	Pipe Size Capacity	Pipe Slope	Pipe Velocity
	Areas		(in)	(cfs)	(ft/ft)	(fps)
North of Area B	В	12.11	24	71.53	0.4	45.54
South End of Haverhill Dr.	D+G+J+K	22.71	24	50.58	0.2	32.20

Channel	Contributing Tributary Areas	Q50 (cfs)	Slope (ft/ft)	Velocity (fps)	Depth (in)	Percent Full (%)
Existing 24" Wide	В	12.11	0.135	17.15	4.20	35.00
Proposed 30" Wide	D+G+J+K	22.71	0.25	24.70	4.44	74.00

PROPOSED CONCRETE CHANNELS

Below are table summaries of the capacities for the existing 27 inch RCP lateral and street (Division St) calculated from *Bentley's FlowMaster* software. See attached calculation printout for more details.

	Contributing Tributary Areas	Slope (ft/ft)	Street Capacity (R/W to R/W) (Q ₅₀) (cfs)	Design Capacity (Q ₅₀) (cfs)	Existing Street Capacity> Design Capacity?
Division St. (34 ft wide)	All (A through K)+ L (Off-site)	0.0650	116.19	93.50	*Yes

CAPACITY FOR EXISTING STREET (DIVISION ST)

Note:

Area L is an off-site tributary area located west of Division St. See "Proposed Hydrology Map for more information)

CAPACITY FOR EXISTING 27-INCH RCP LATERAL

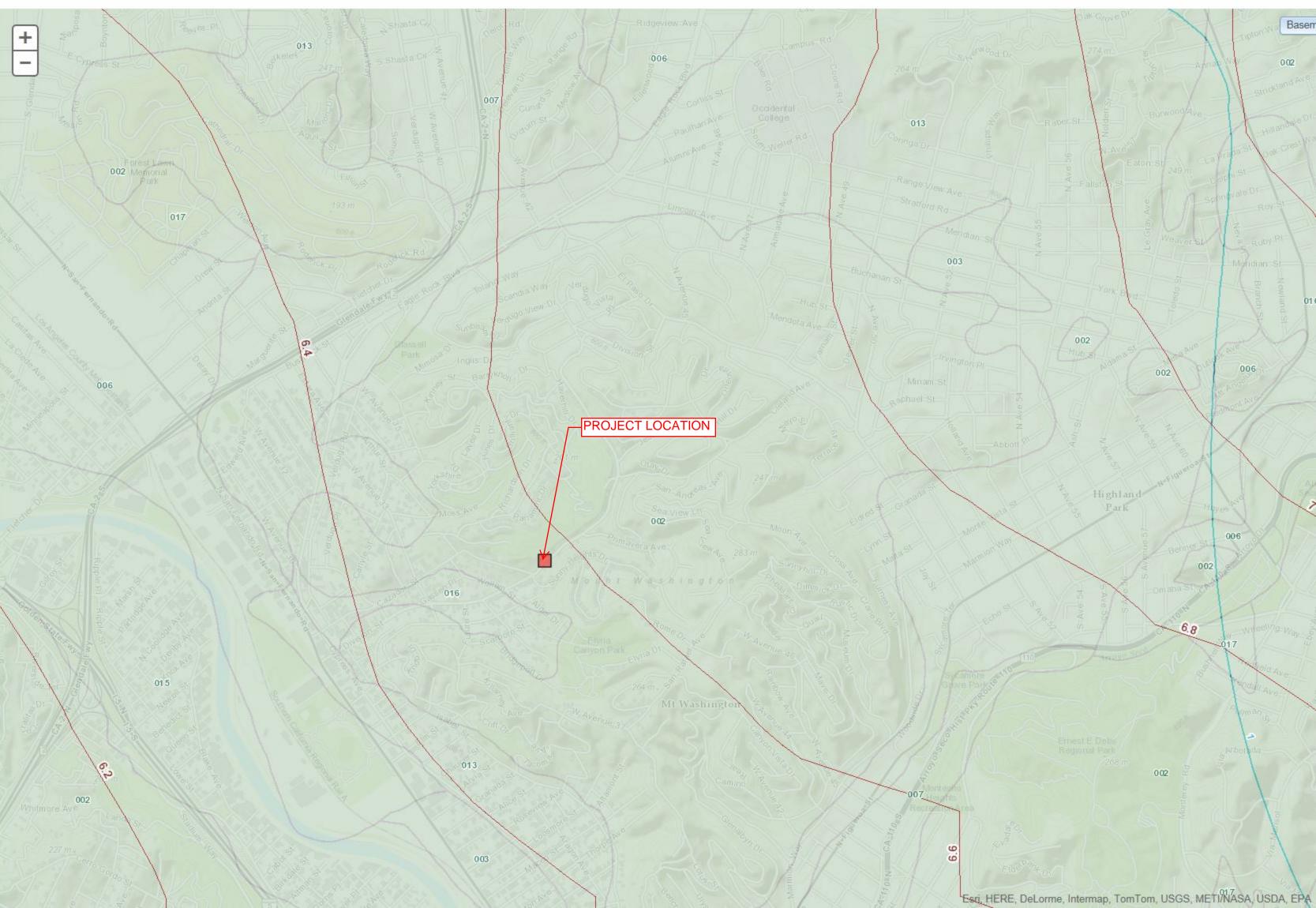
	Contributing	Slope	Full	Design	Percent	Existing
	Tributary	(ft/ft)	Pipe	Capacity	Full	Pipe
	Areas		Capacity	(Q50)	(%)	Capacity>
			(Q50)	(cfs)		Design
			(cfs)			Capacity?
27" RCP	All (A	0.2054	138.50	69.18	50.6	*Yes
Lateral	through K)					

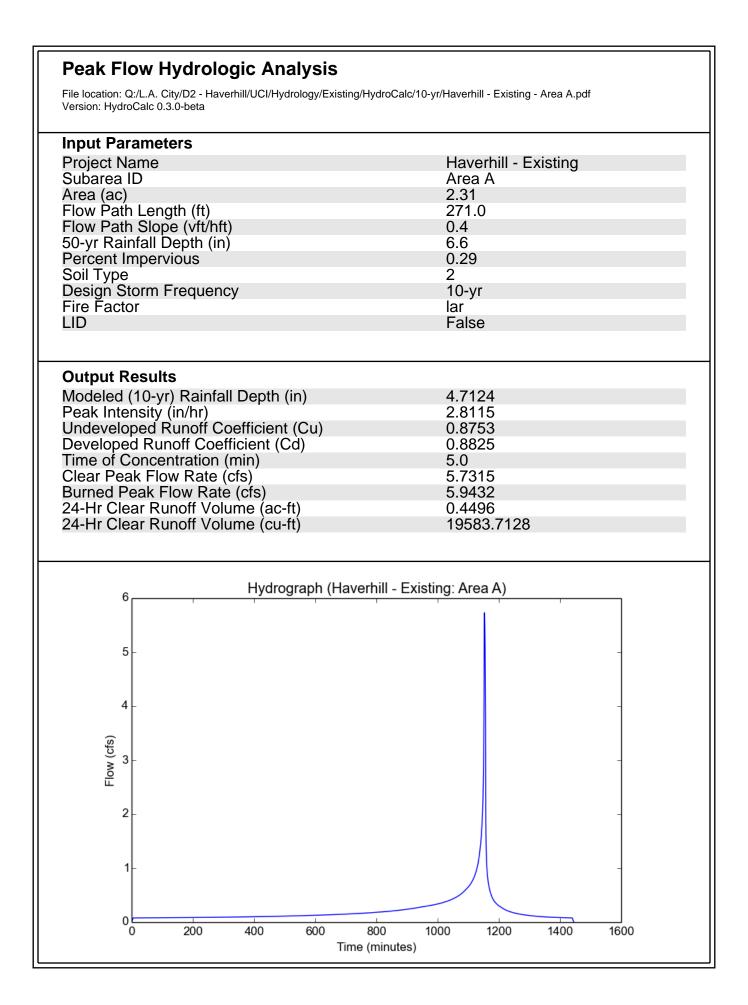
*Existing runoff capacities are greater than the proposed indicating that both discharge locations can accommodate the storm water runoff from the proposed development.

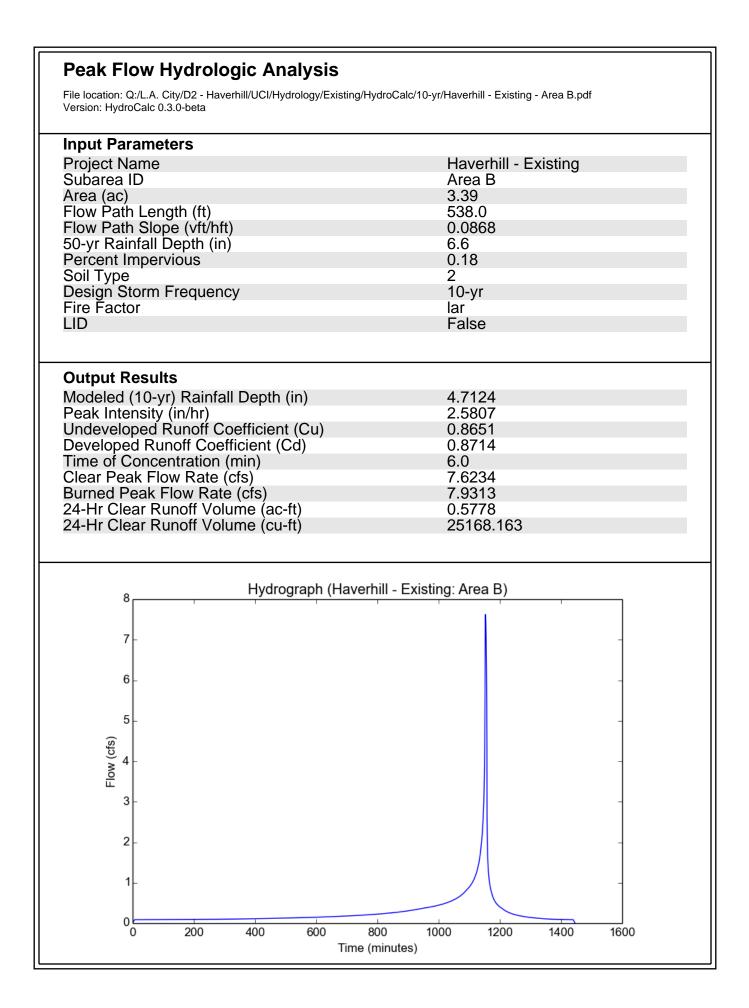
Existing Capacity for 27-inch RCP Lateral

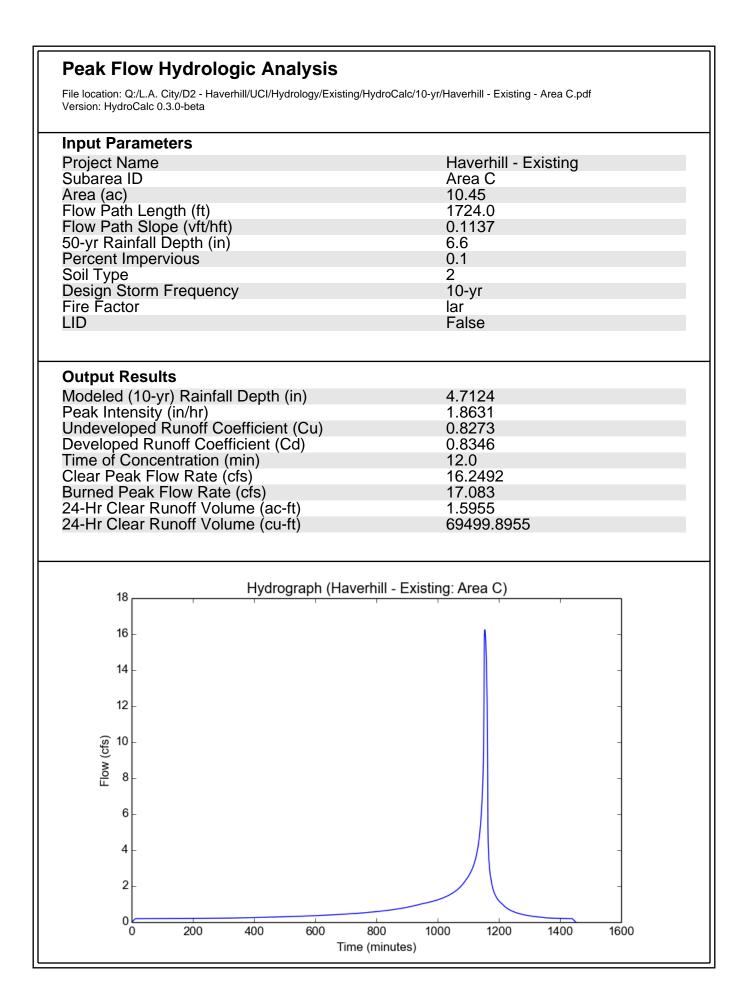
Attachment C: Maps and Storm Drain As Builts

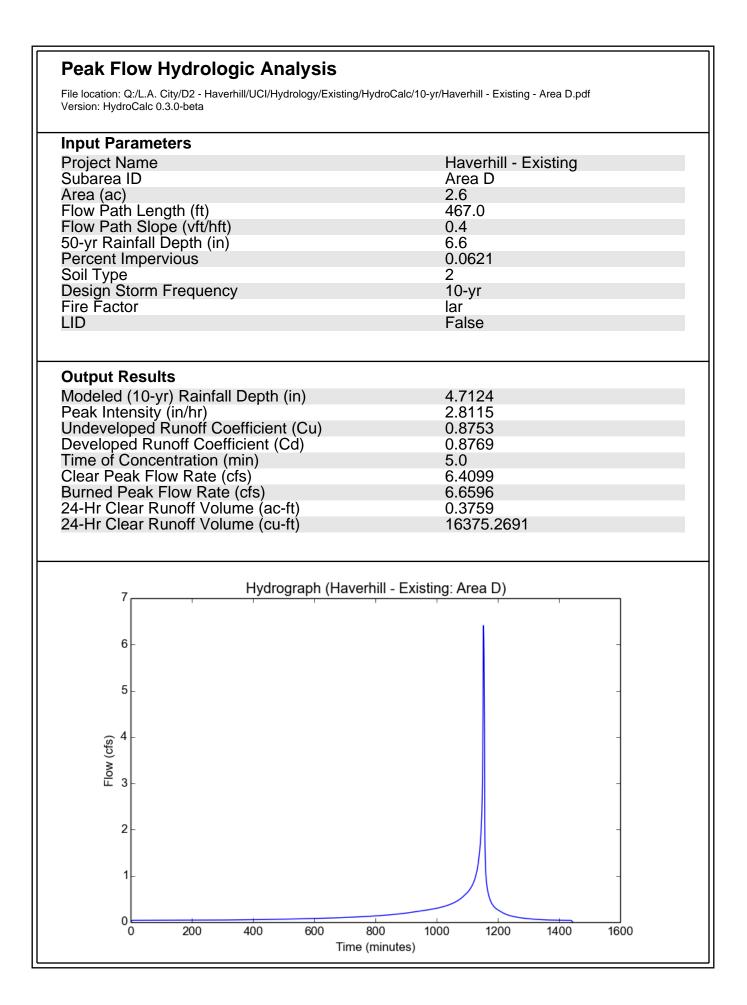
Hydrology Maps

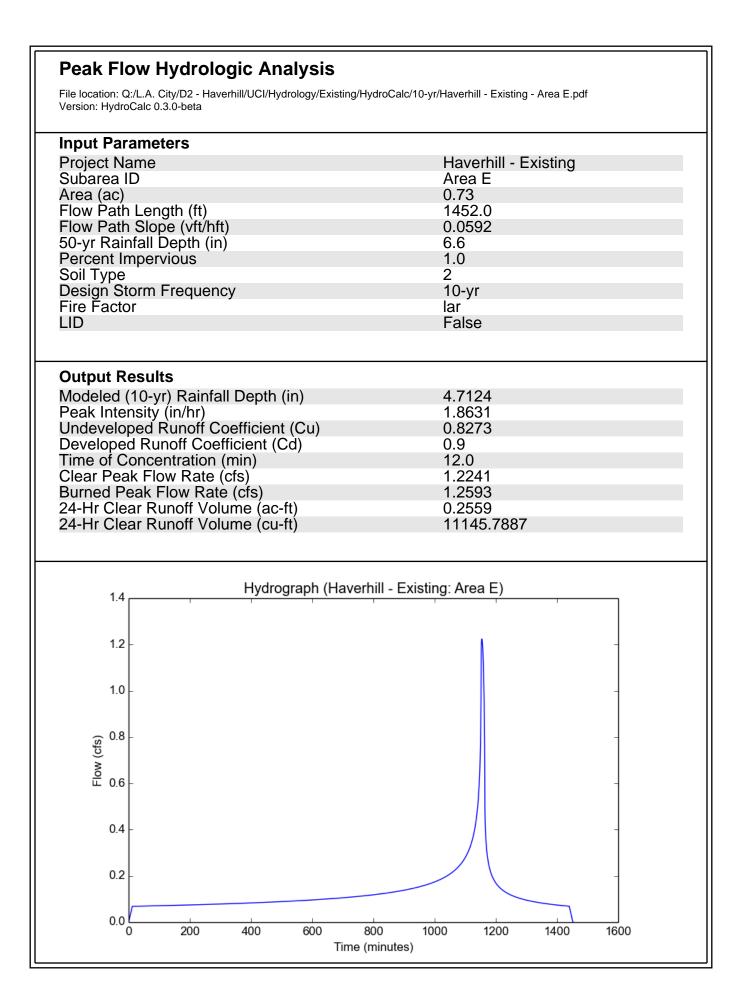

Storm Drain As Builts

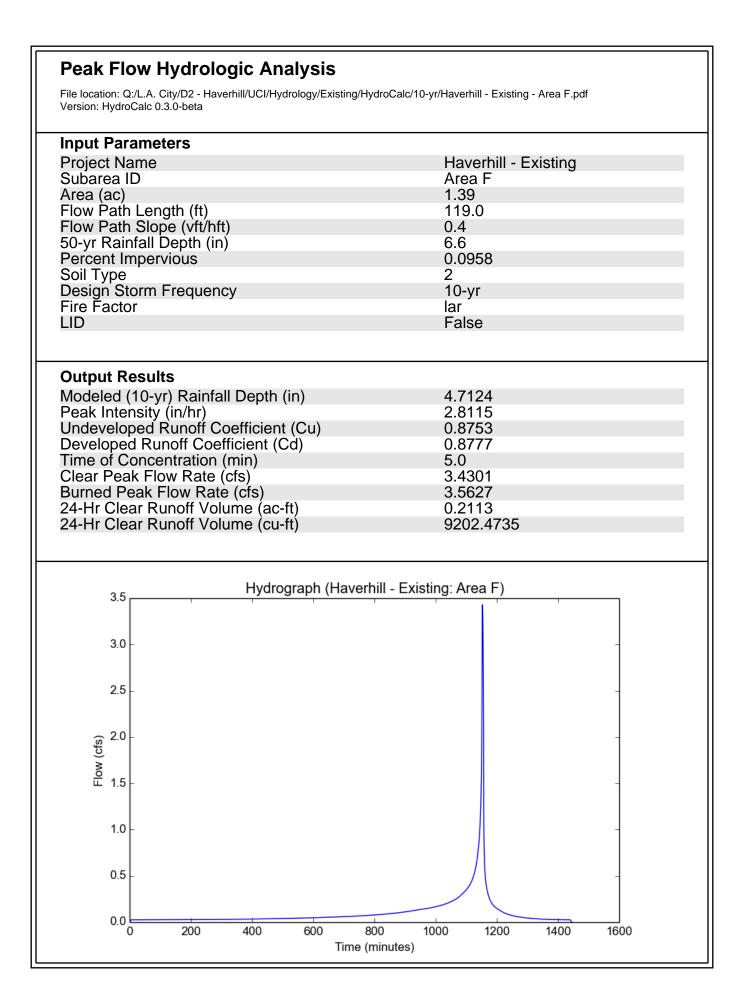

ATTACHMENT A 10-YEAR STORM 25-YEAR STORM 50-YEAR STORM HYDROLOGY CALCULATIONS PER LA COUNTY'S HYDROCALC

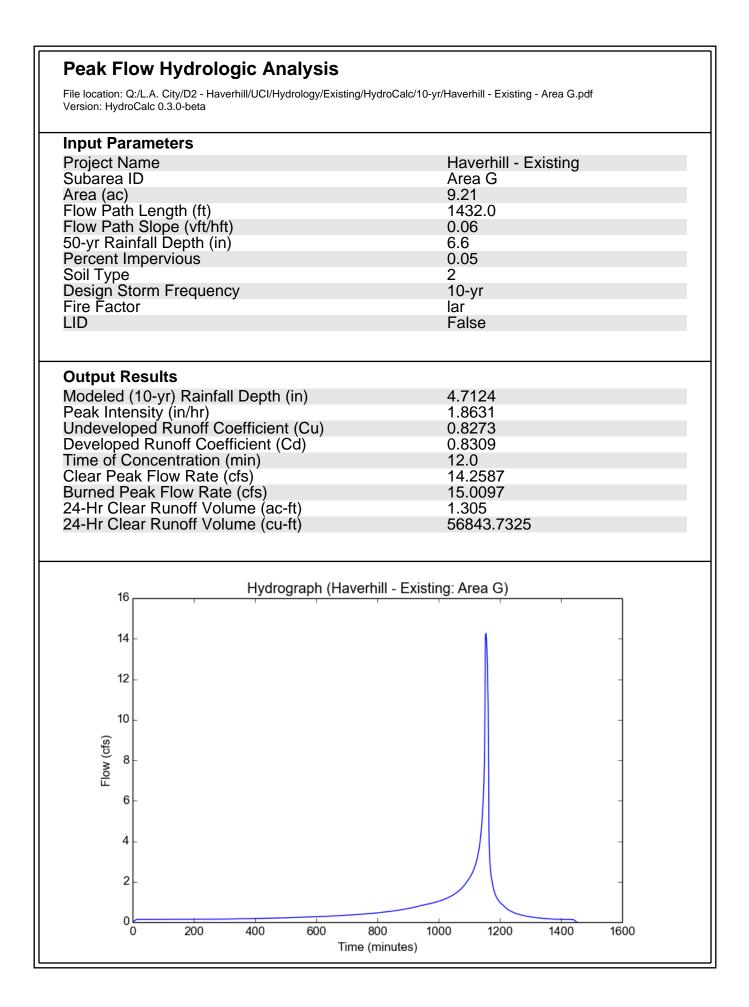

EXISTING CONDITION 10-YEAR, 25-YEAR, AND 50-YEAR

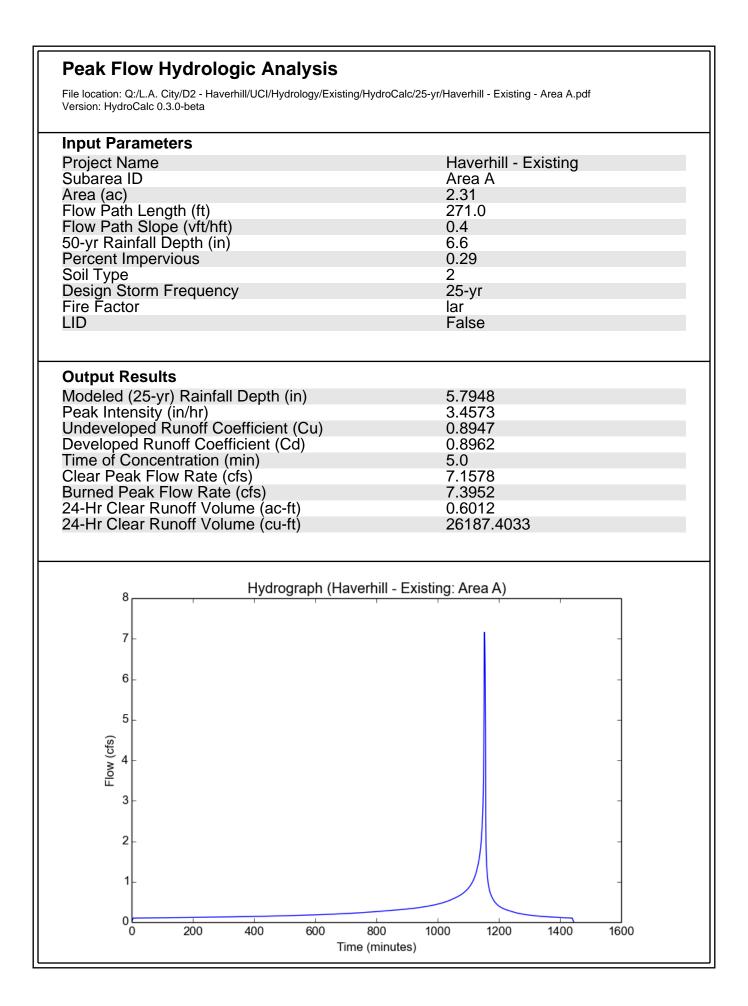

Hydrology Map A GIS viewer application to view the data for the hydrology manual.

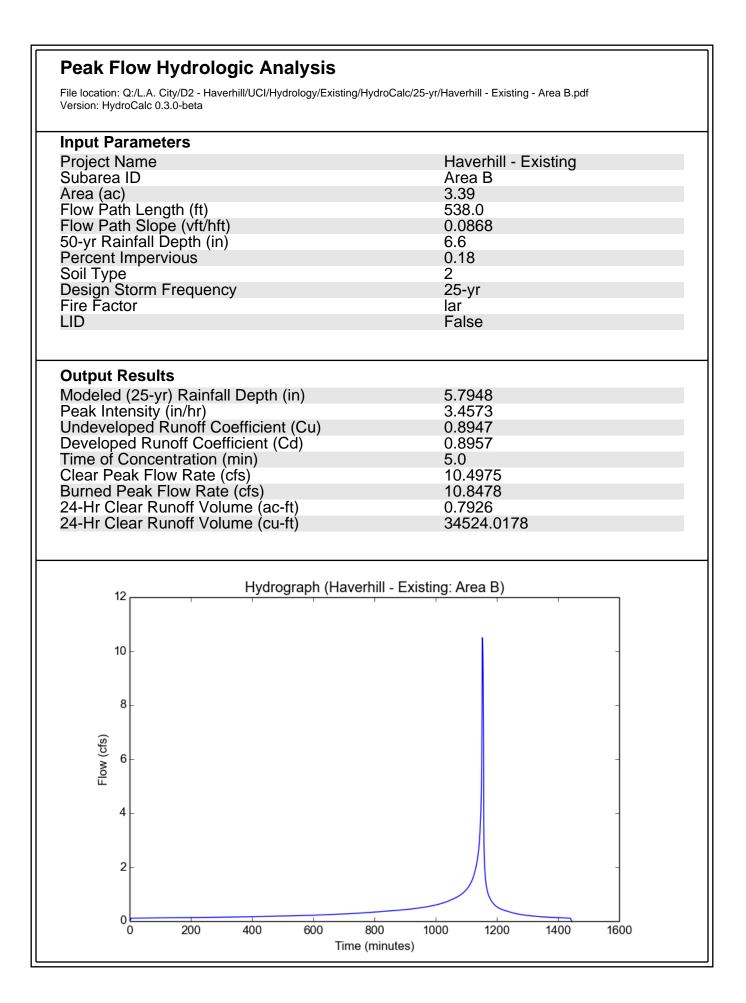

LAYERS	
50yr Two Tenths (Rainfall)	
DPA Zones	
Soils 2004	- Corpress st
TG Page	
🗹 — Final 85th Percentile, 24-hr Rainfall	
- 1-year, 1-hour Rainfall Intensity	Per (F(Ca))
	- Sale All Ang
SEARCH	
Zoom to TG Page:	
\checkmark	Forest Lawn 002 Memorial
Enter Address, Cross Street, or Parcel No.:	Park
(ex: 900 S. Fremont Ave., Fremont@Valley, 5342005904) cazdor st, division st Search	
Address Search Results:	017
cazdor st division st	

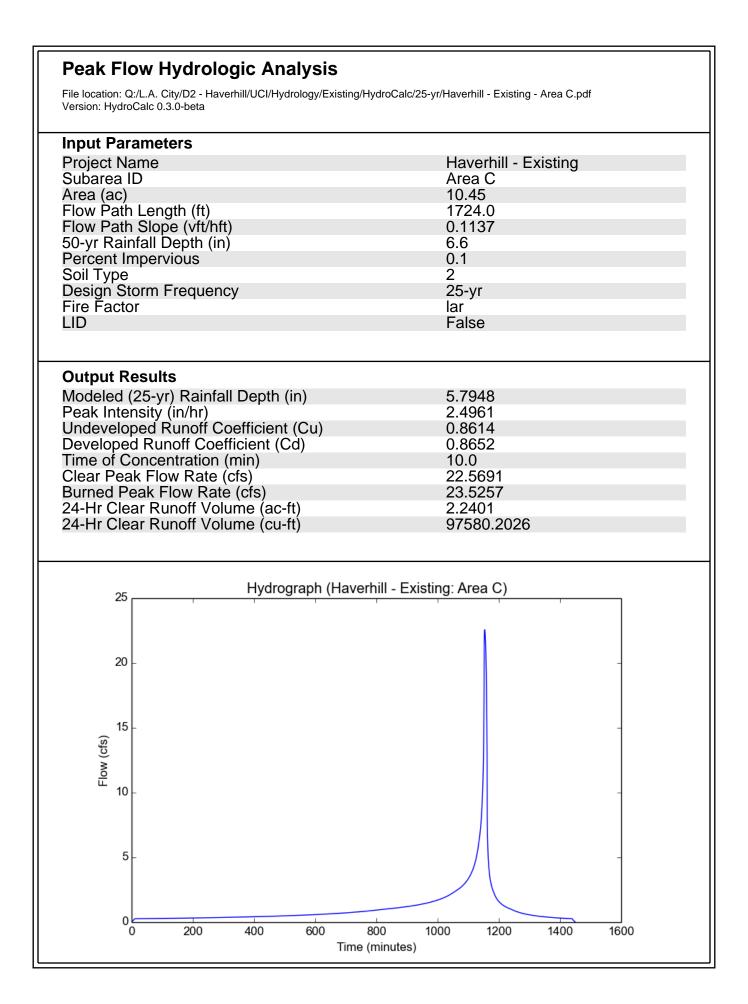


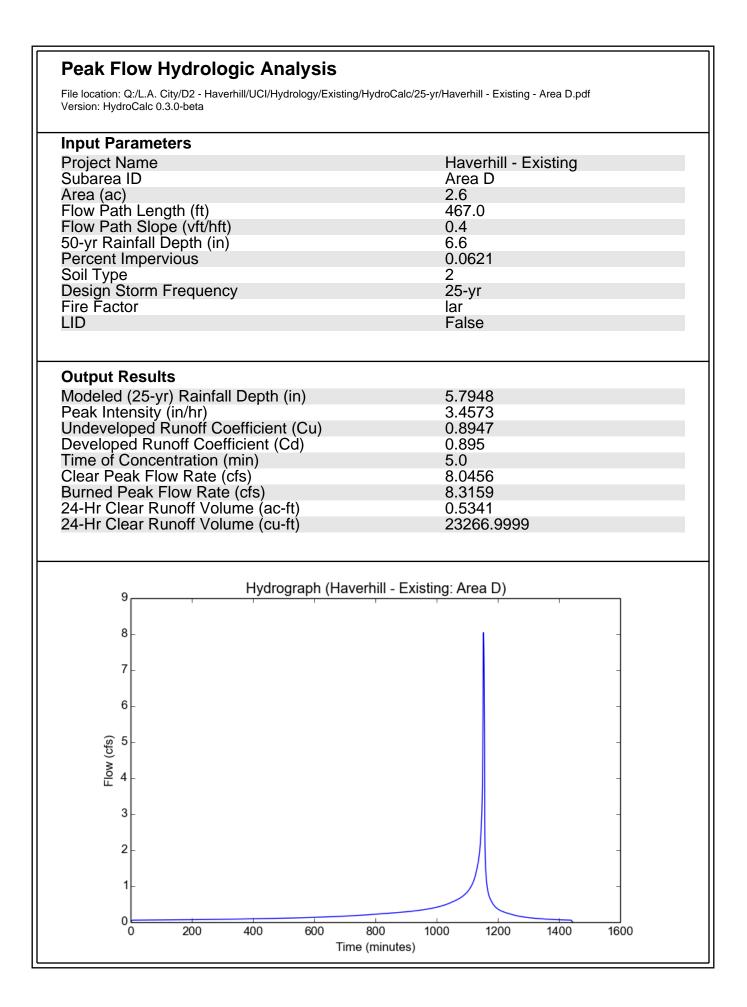


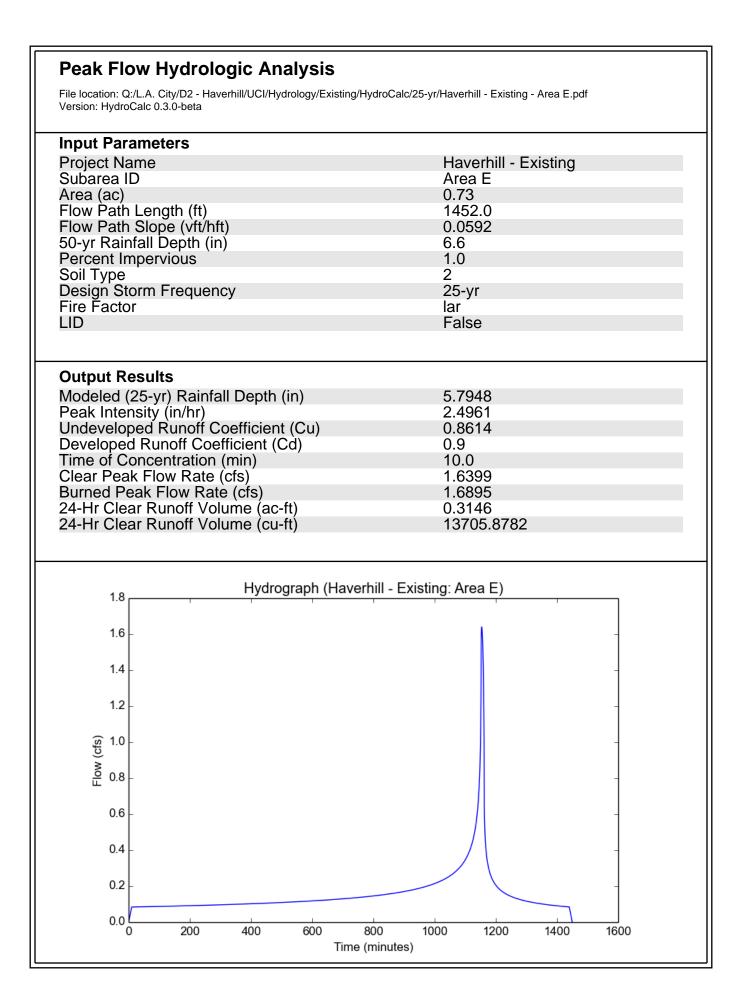


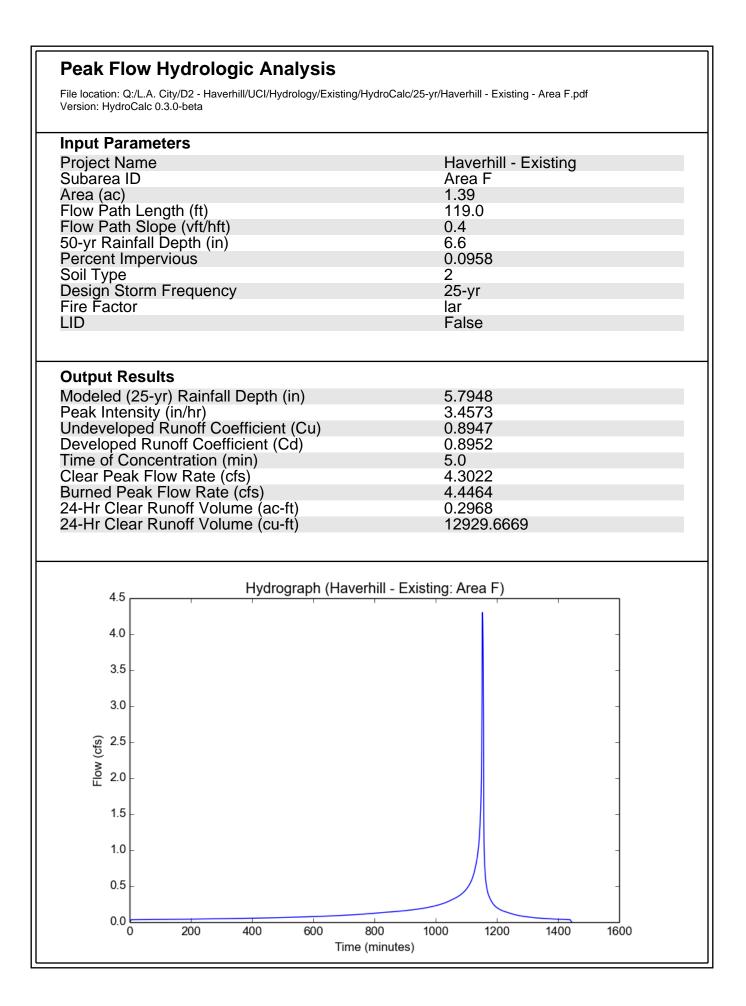


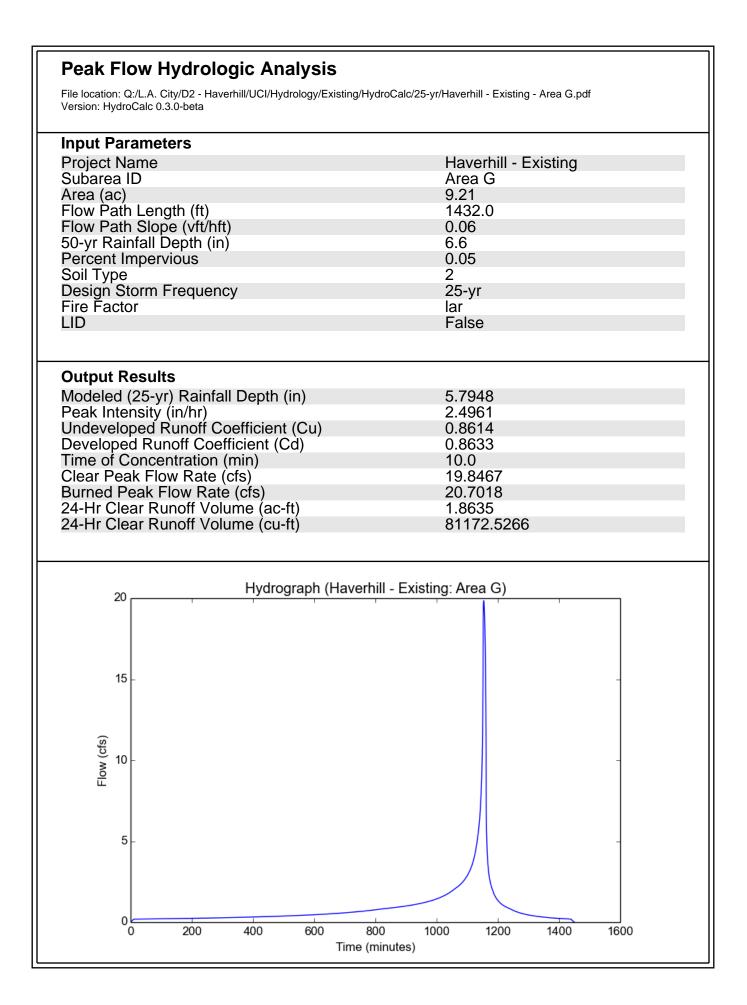


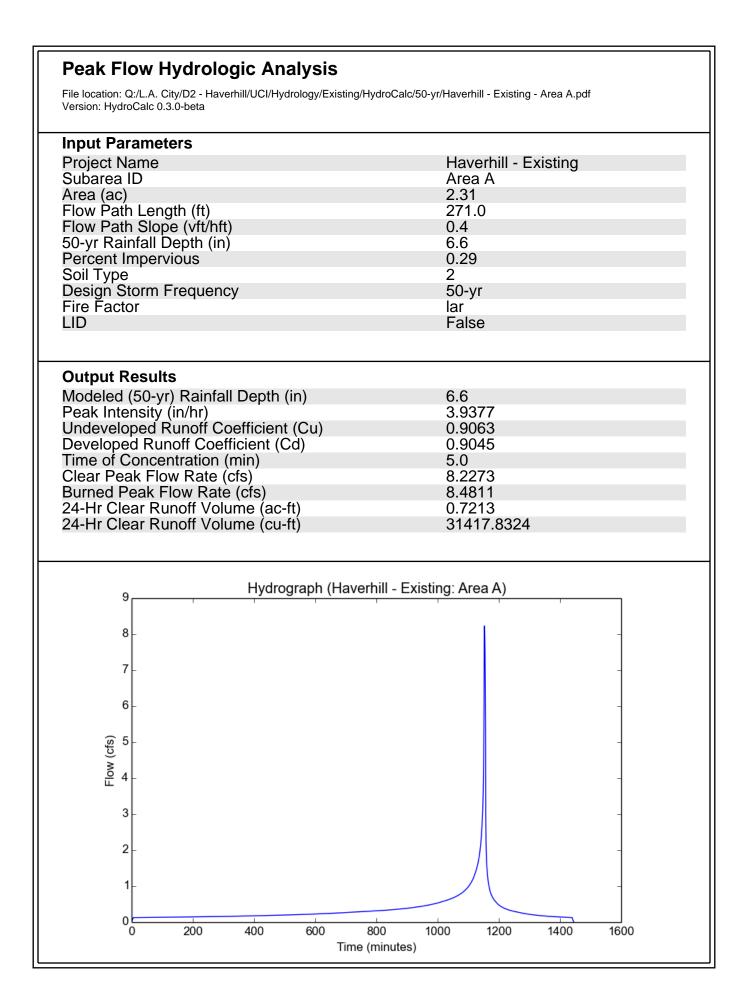


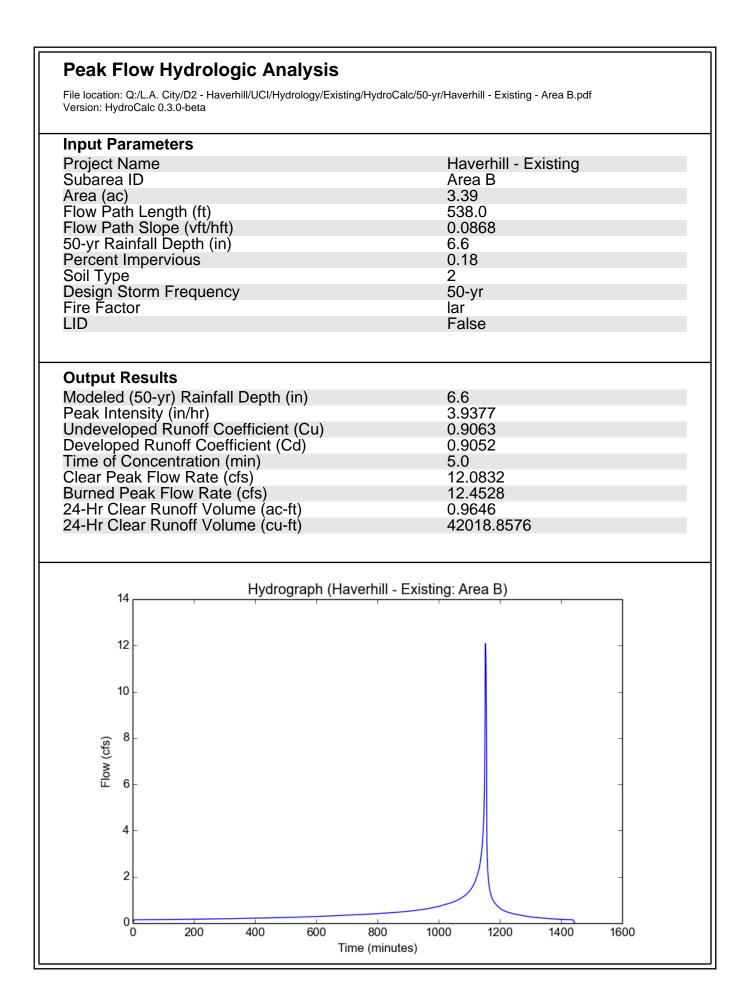


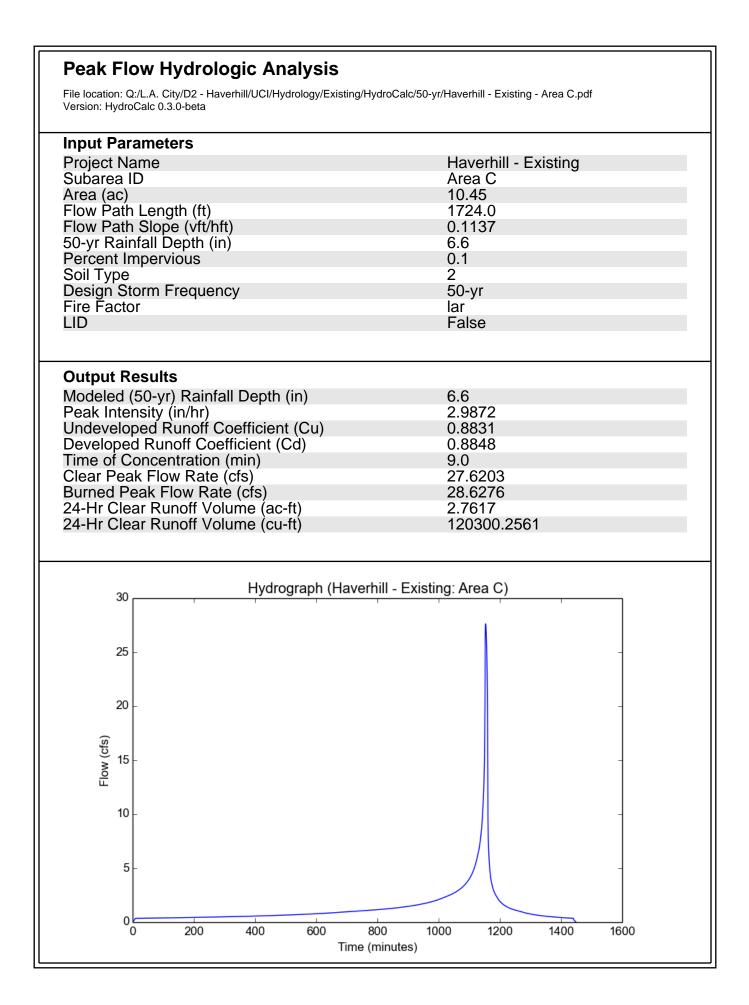


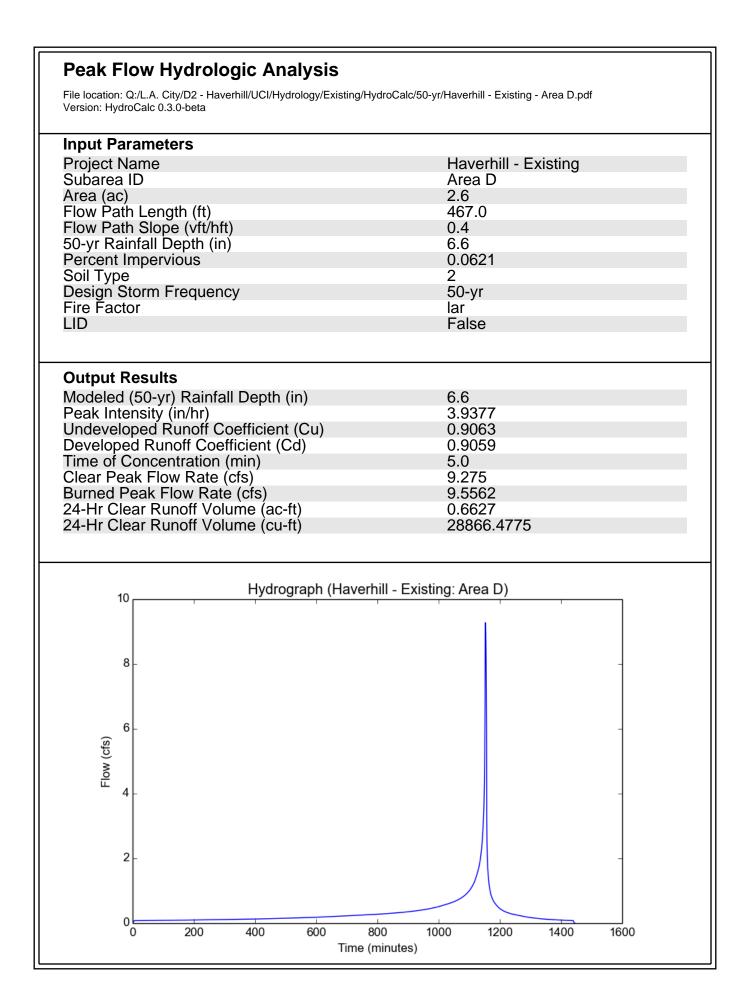


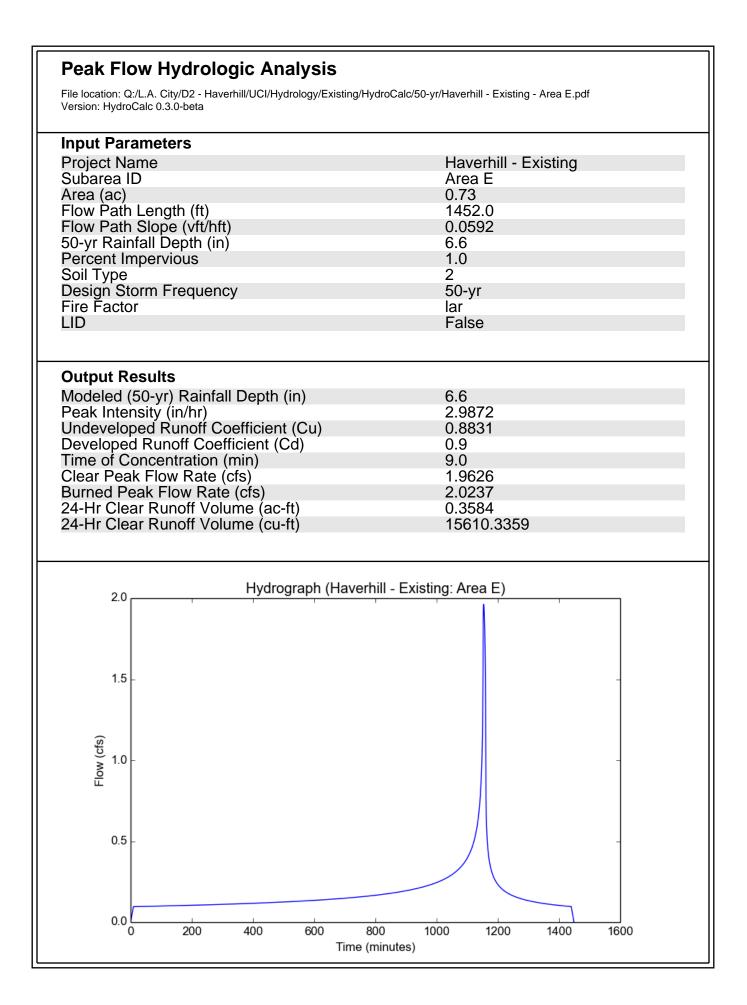


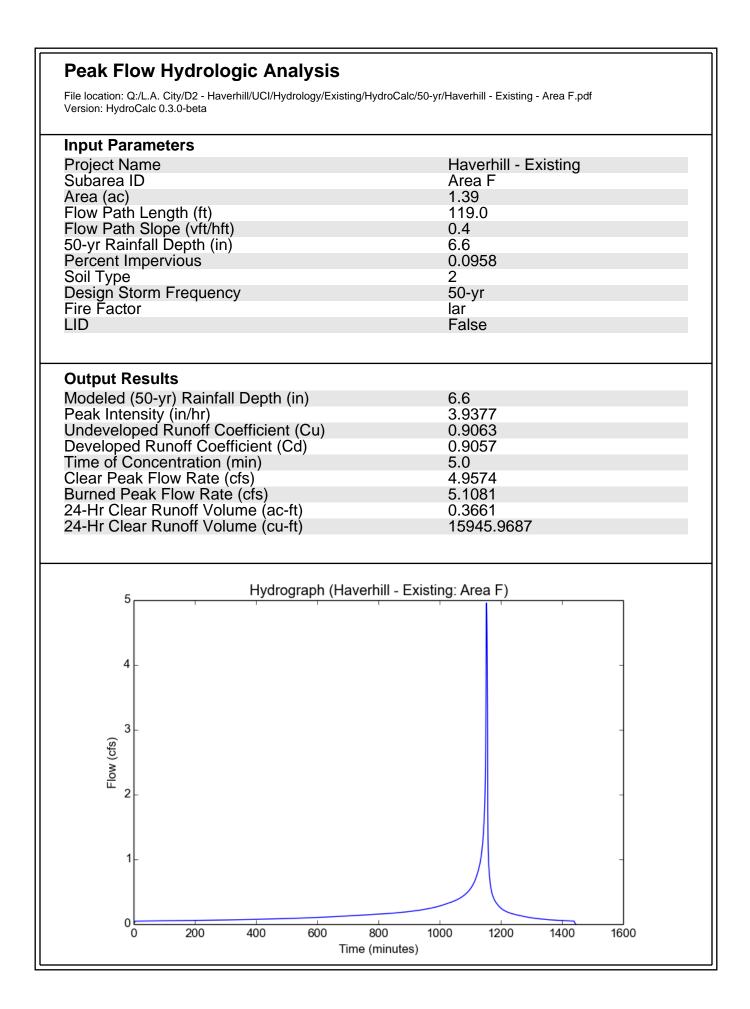


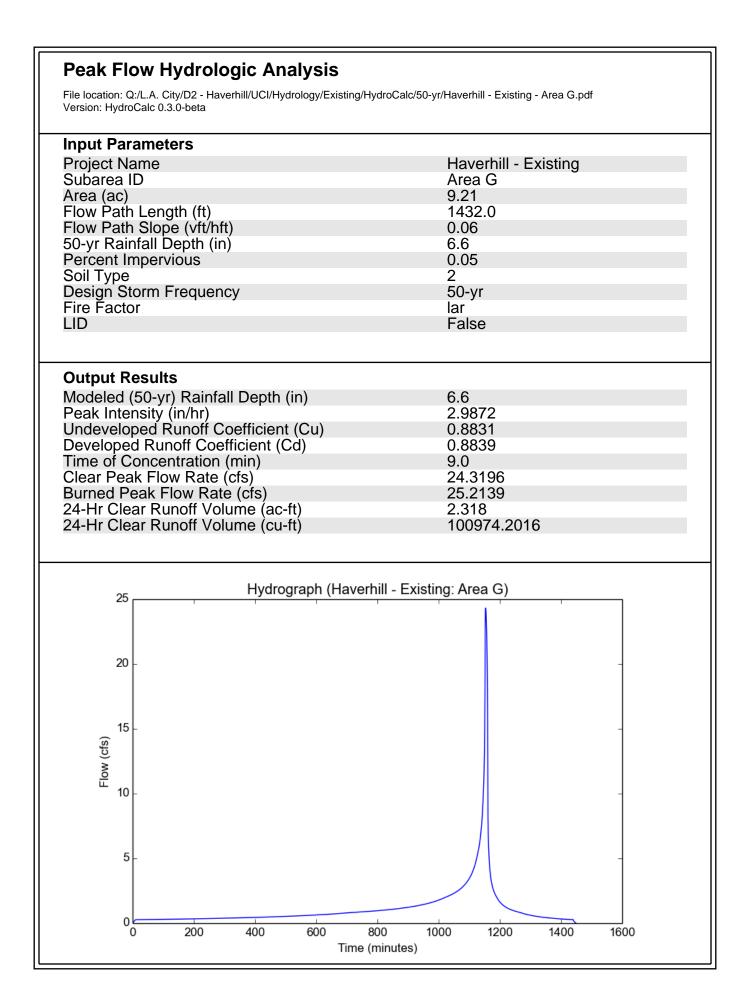


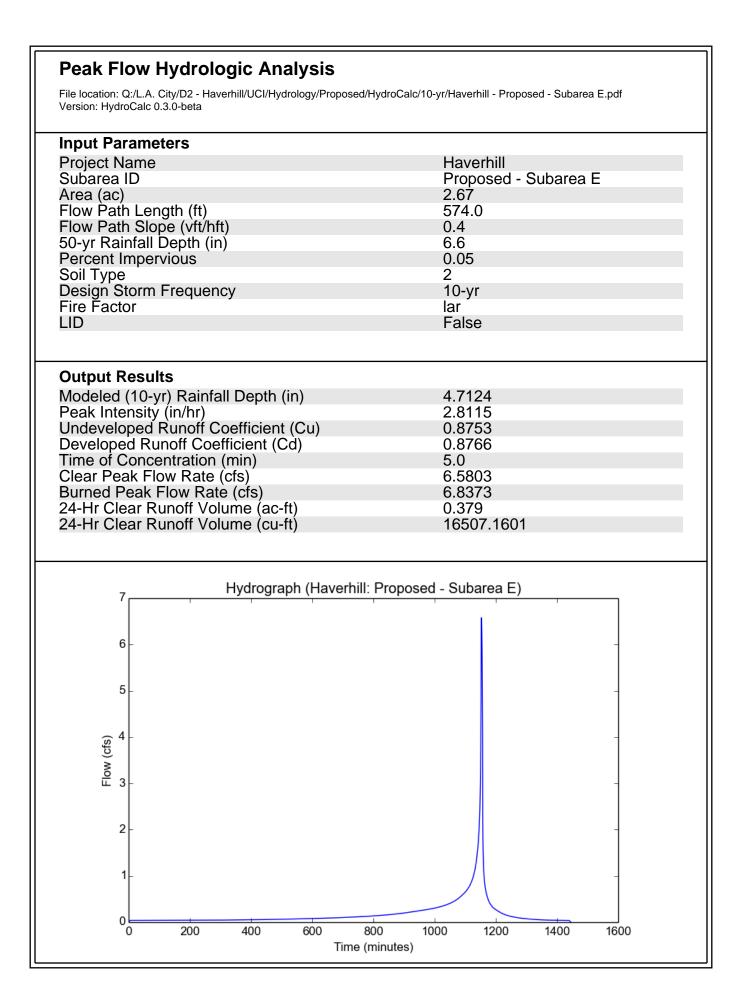


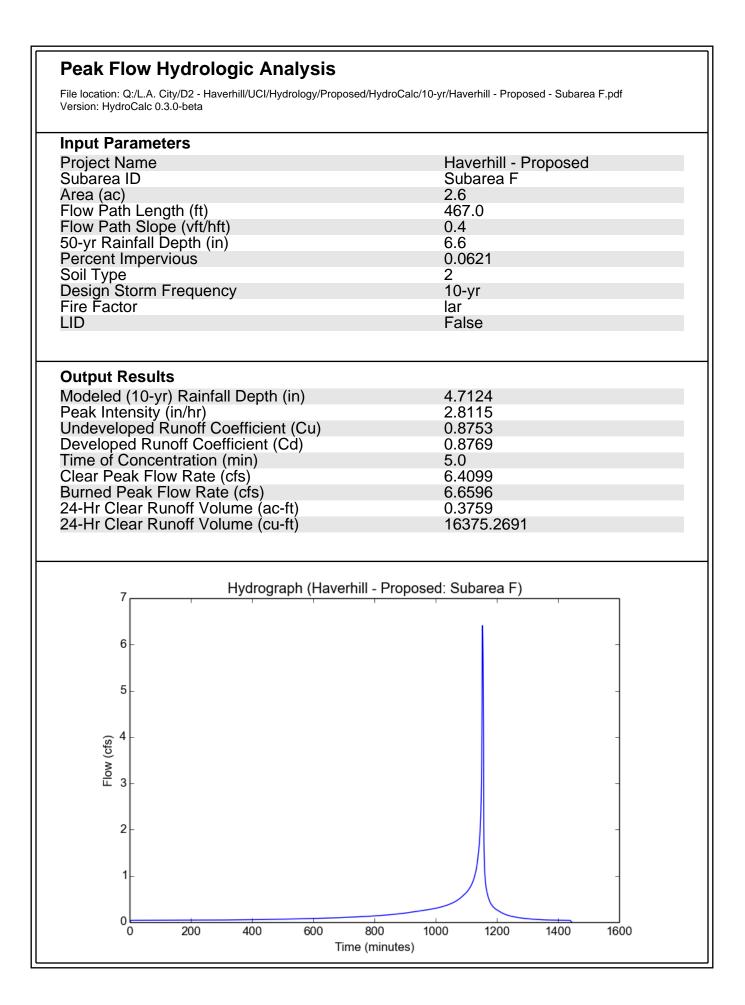




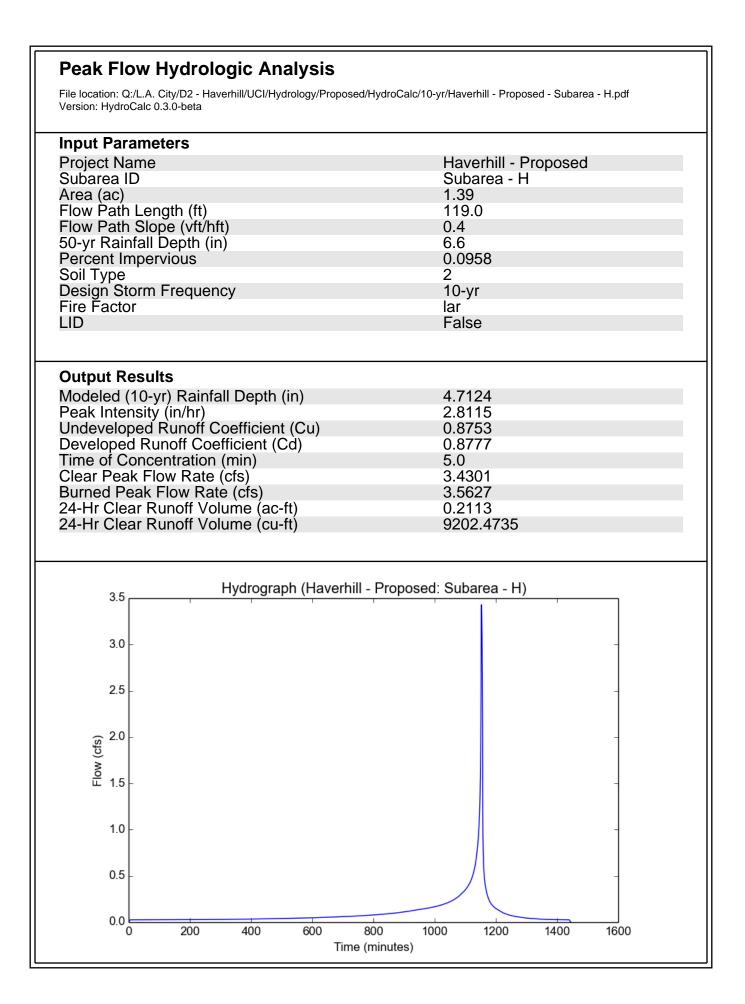




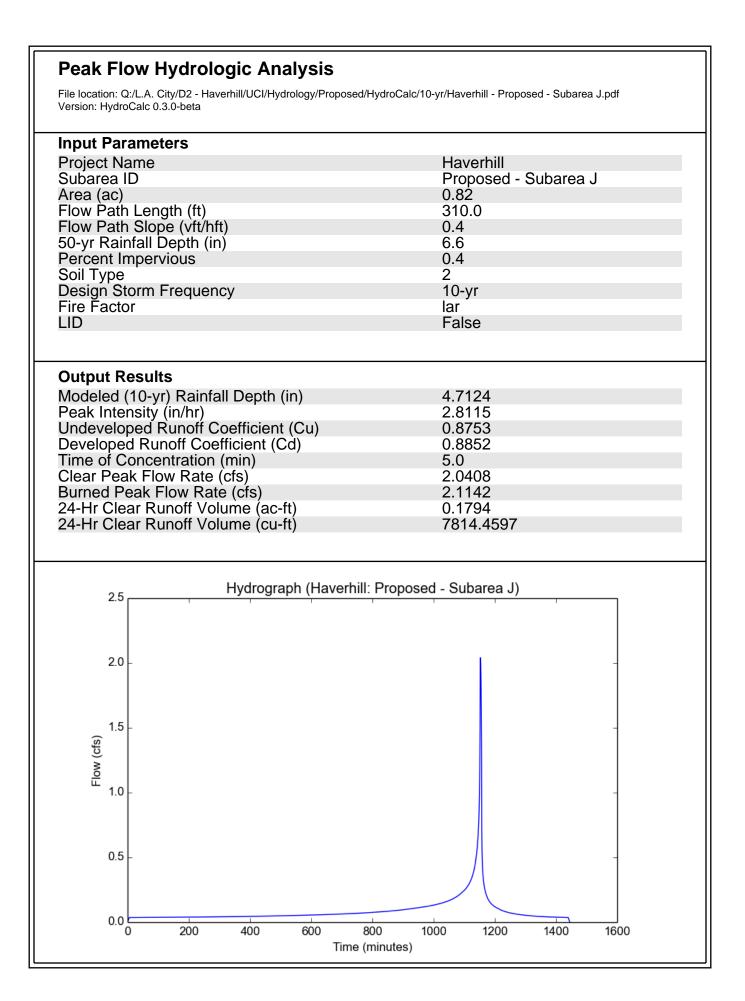

PROPOSED CONDITION 10-YEAR, 25-YEAR, AND 50-YEAR

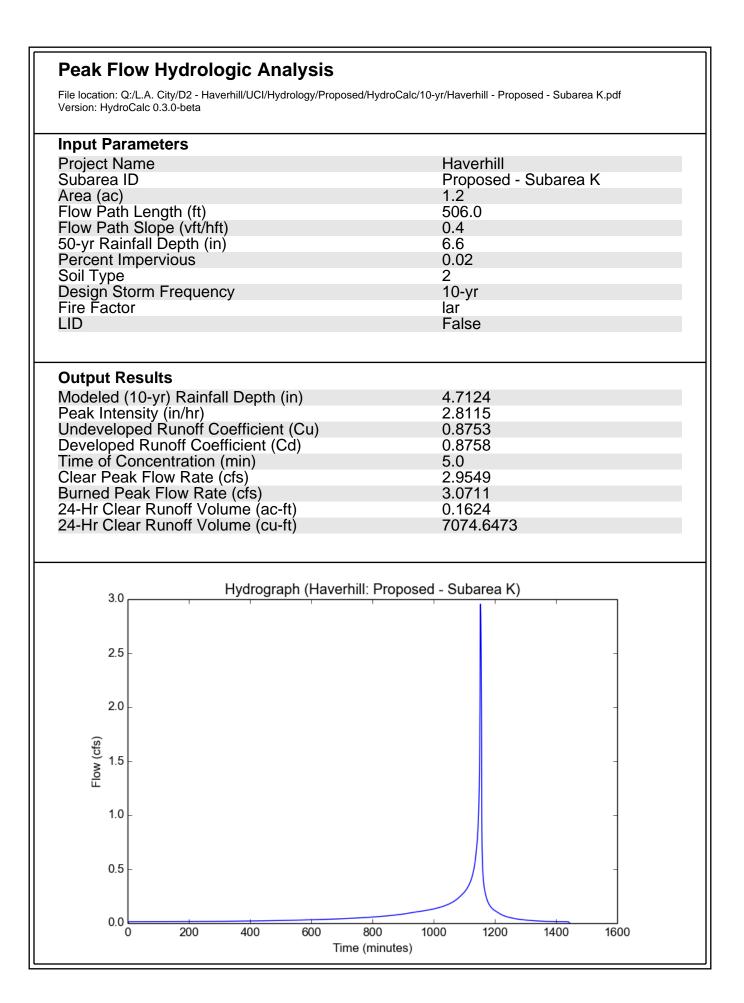

Peak Flow Hydrologic Analysis File location: Q:/L.A. City/D2 - Haverhill/UCI/Hydrology/Proposed/HydroCalc/10-yr/Haverhill - Proposed - Subarea A.pdf Version: HydroCalc 0.3.0-beta **Input Parameters Project Name** Haverhill Subarea ID Proposed - Subarea A Area (ac) 1.78 Flow Path Length (ft) 242.0 Flow Path Slope (vft/hft) 0.5 50-yr Rainfall Depth (in) 6.6 Percent Impervious 0.438 Soil Type 2 **Design Storm Frequency** 10-yr Fire Factor lar LID False **Output Results** Modeled (10-yr) Rainfall Depth (in) 4.7124 Peak Intensity (in/hr) 2.8115 Undeveloped Runoff Coefficient (Cu) 0.8753 Developed Runoff Coefficient (Cd) 0.8861 Time of Concentration (min) 5.0 Clear Peak Flow Rate (cfs) 4.4347 Burned Peak Flow Rate (cfs) 4.5928 24-Hr Clear Runoff Volume (ac-ft) 0.4043 24-Hr Clear Runoff Volume (cu-ft) 17609.999 Hydrograph (Haverhill: Proposed - Subarea A) 4.5 4.0 3.5 3.0 Flow (cfs) 2.5 2.0 1.5 1.0 0.5 0.0 200 400 600 800 1000 1200 0 1400 1600 Time (minutes)

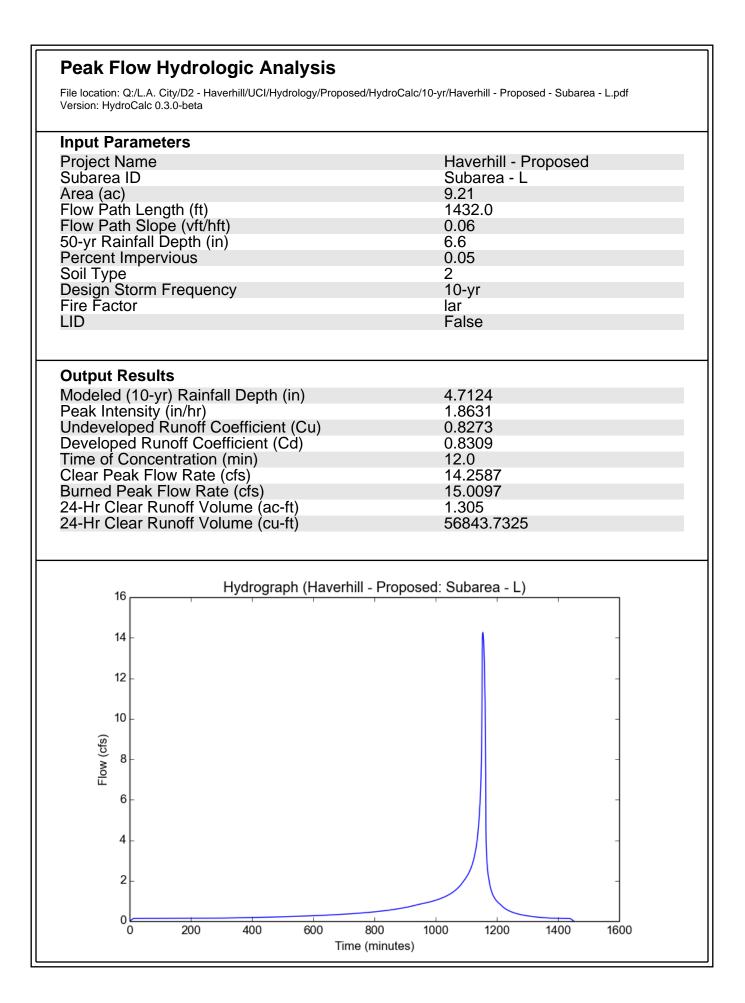
Peak Flow Hydrologic Analysis File location: Q:/L.A. City/D2 - Haverhill/UCI/Hydrology/Proposed/HydroCalc/10-yr/Haverhill - Proposed - Subarea B.pdf Version: HydroCalc 0.3.0-beta **Input Parameters Project Name** Haverhill Subarea ID Proposed - Subarea B Area (ac) 3.41 Flow Path Length (ft) 584.0 Flow Path Slope (vft/hft) 0.0799 50-yr Rainfall Depth (in) 6.6 Percent Impervious 0.652 Soil Type 2 **Design Storm Frequency** 10-yr Fire Factor lar LID False **Output Results** Modeled (10-yr) Rainfall Depth (in) 4.7124 Peak Intensity (in/hr) 2.5807 Undeveloped Runoff Coefficient (Cu) 0.8651 Developed Runoff Coefficient (Cd) 0.8879 Time of Concentration (min) 6.0 Clear Peak Flow Rate (cfs) 7.8132 Burned Peak Flow Rate (cfs) 8.0833 24-Hr Clear Runoff Volume (ac-ft) 0.9346 24-Hr Clear Runoff Volume (cu-ft) 40712.9746 Hydrograph (Haverhill: Proposed - Subarea B) 8 7 6 5 Flow (cfs) 4 3 2 1 01 200 400 600 800 1000 1200 0 1400 1600 Time (minutes)

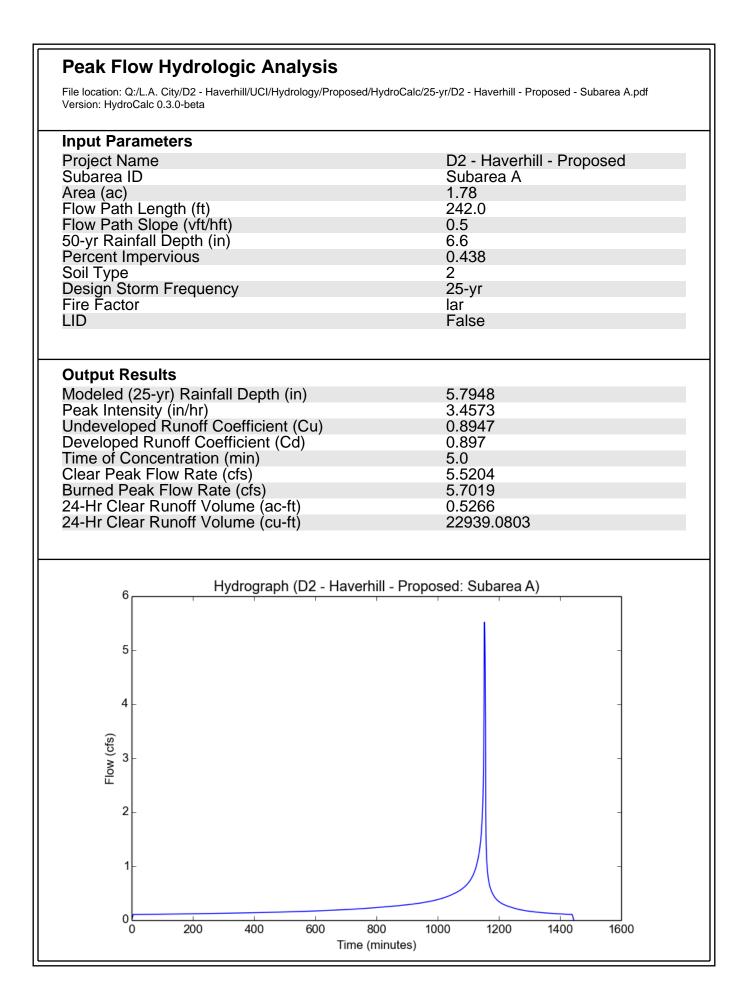

Peak Flow Hydrologic Analysis File location: Q:/L.A. City/D2 - Haverhill/UCI/Hydrology/Proposed/HydroCalc/10-yr/Haverhill - Proposed - Subarea C.pdf Version: HydroCalc 0.3.0-beta **Input Parameters Project Name** Haverhill Subarea ID Proposed - Subarea C Area (ac) 1.08 Flow Path Length (ft) 147.0 Flow Path Slope (vft/hft) 0.286 50-yr Rainfall Depth (in) 6.6 Percent Impervious 0.215 Soil Type 2 **Design Storm Frequency** 10-yr Fire Factor lar LID False **Output Results** Modeled (10-yr) Rainfall Depth (in) 4.7124 Peak Intensity (in/hr) 2.8115 Undeveloped Runoff Coefficient (Cu) 0.8753 Developed Runoff Coefficient (Cd) 0.8806 Time of Concentration (min) 5.0 Clear Peak Flow Rate (cfs) 2.674 Burned Peak Flow Rate (cfs) 2.7746 24-Hr Clear Runoff Volume (ac-ft) 0.1924 8381.344 24-Hr Clear Runoff Volume (cu-ft) Hydrograph (Haverhill: Proposed - Subarea C) 3.0 2.5 2.0 Flow (cfs) 1.5 1.0 0.5 0.0 400 600 800 1000 1200 0 200 1400 1600 Time (minutes)

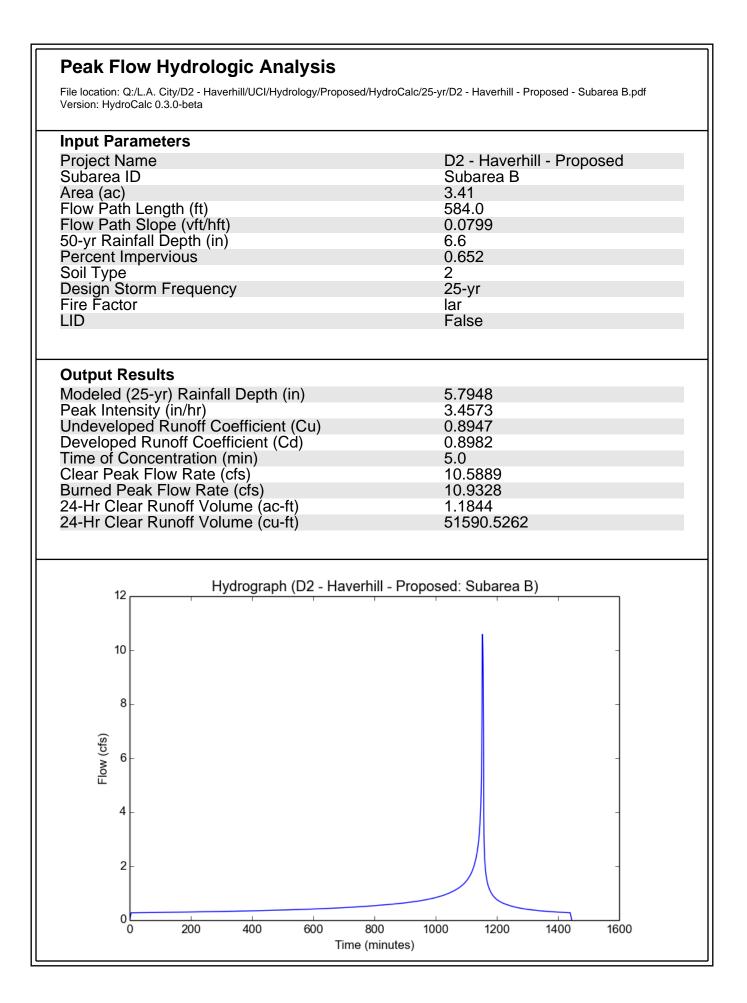
Peak Flow Hydrologic Analysis File location: Q:/L.A. City/D2 - Haverhill/UCI/Hydrology/Proposed/HydroCalc/10-yr/Haverhill - Proposed - Subarea D.pdf Version: HydroCalc 0.3.0-beta **Input Parameters Project Name** Haverhill Subarea ID Proposed - Subarea D Area (ac) 4.08 Flow Path Length (ft) 1322.0 Flow Path Slope (vft/hft) 0.0901 50-yr Rainfall Depth (in) 6.6 Percent Impervious 0.63 Soil Type 2 **Design Storm Frequency** 10-yr Fire Factor lar LID False **Output Results** Modeled (10-yr) Rainfall Depth (in) 4.7124 Peak Intensity (in/hr) 2.0298 Undeveloped Runoff Coefficient (Cu) 0.8408 Developed Runoff Coefficient (Cd) 0.8781 Time of Concentration (min) 10.0 Clear Peak Flow Rate (cfs) 7.2721 7.5374 Burned Peak Flow Rate (cfs) 24-Hr Clear Runoff Volume (ac-ft) 1.0984 24-Hr Clear Runoff Volume (cu-ft) 47847.3374 Hydrograph (Haverhill: Proposed - Subarea D) 8 7 6 5 Flow (cfs) 4 3 2 1 0 200 400 600 800 1000 1200 0 1400 1600 Time (minutes)

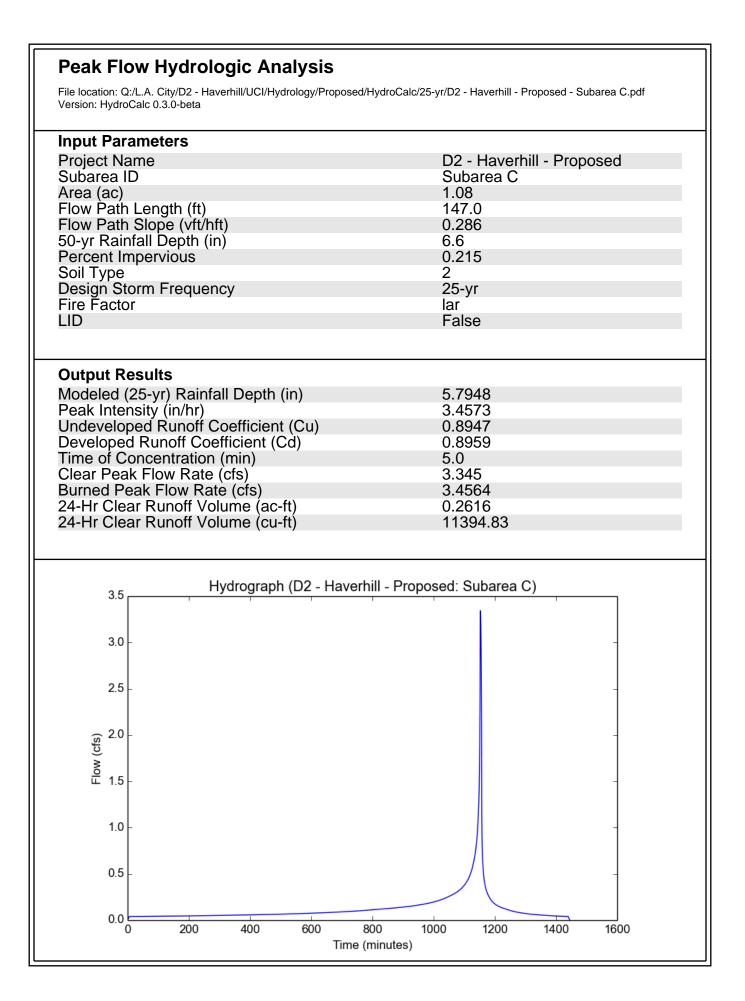


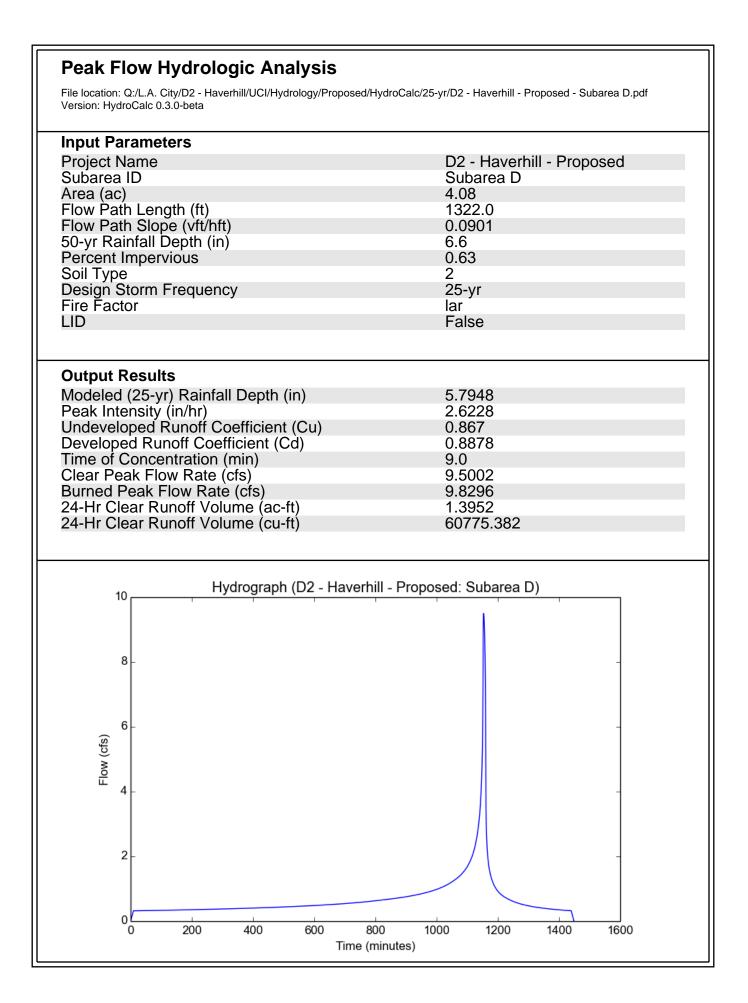


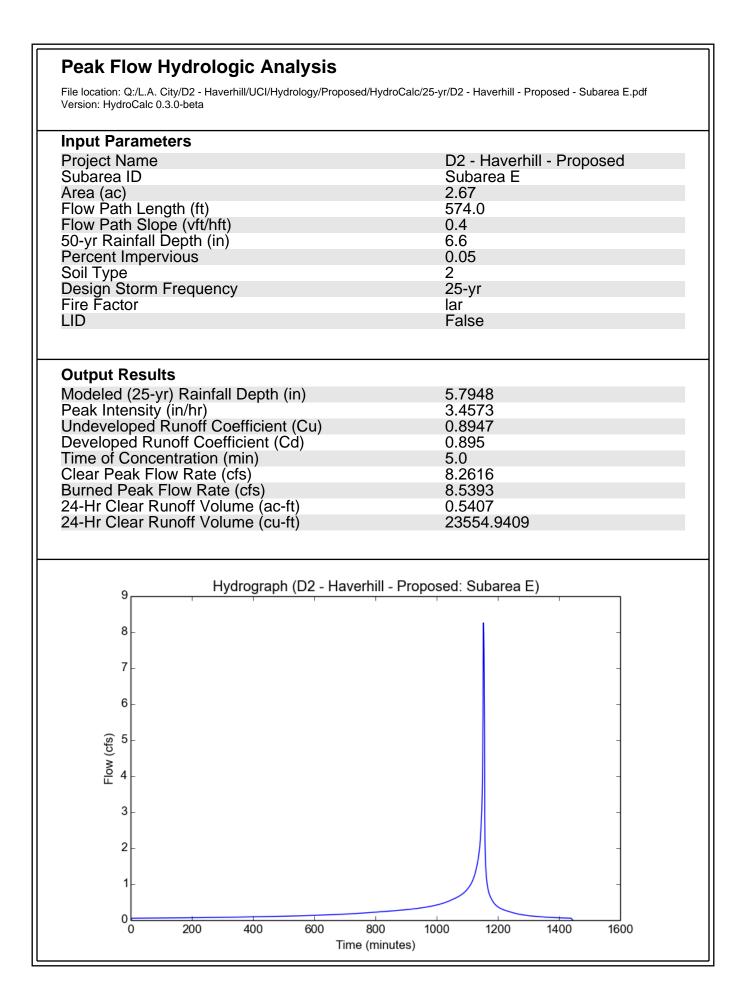

Peak Flow Hydrologic Analysis File location: Q:/L.A. City/D2 - Haverhill/UCI/Hydrology/Proposed/HydroCalc/10-yr/Haverhill - Proposed - Subarea G.pdf Version: HydroCalc 0.3.0-beta **Input Parameters Project Name** Haverhill Subarea ID Proposed - Subarea G Area (ac) 1.12 Flow Path Length (ft) 157.0 Flow Path Slope (vft/hft) 0.038 50-yr Rainfall Depth (in) 6.6 Percent Impervious 0.48 Soil Type 2 **Design Storm Frequency** 10-yr Fire Factor lar LID False **Output Results** Modeled (10-yr) Rainfall Depth (in) 4.7124 Peak Intensity (in/hr) 2.8115 Undeveloped Runoff Coefficient (Cu) 0.8753 Developed Runoff Coefficient (Cd) 0.8872 Time of Concentration (min) 5.0 Clear Peak Flow Rate (cfs) 2.7937 Burned Peak Flow Rate (cfs) 2.8922 24-Hr Clear Runoff Volume (ac-ft) 0.2647 24-Hr Clear Runoff Volume (cu-ft) 11530.3356 Hydrograph (Haverhill: Proposed - Subarea G) 3.0 2.5 2.0 Flow (cfs) 1.5 1.0 0.5 0.0 200 400 600 800 1000 1200 1600 0 1400 Time (minutes)

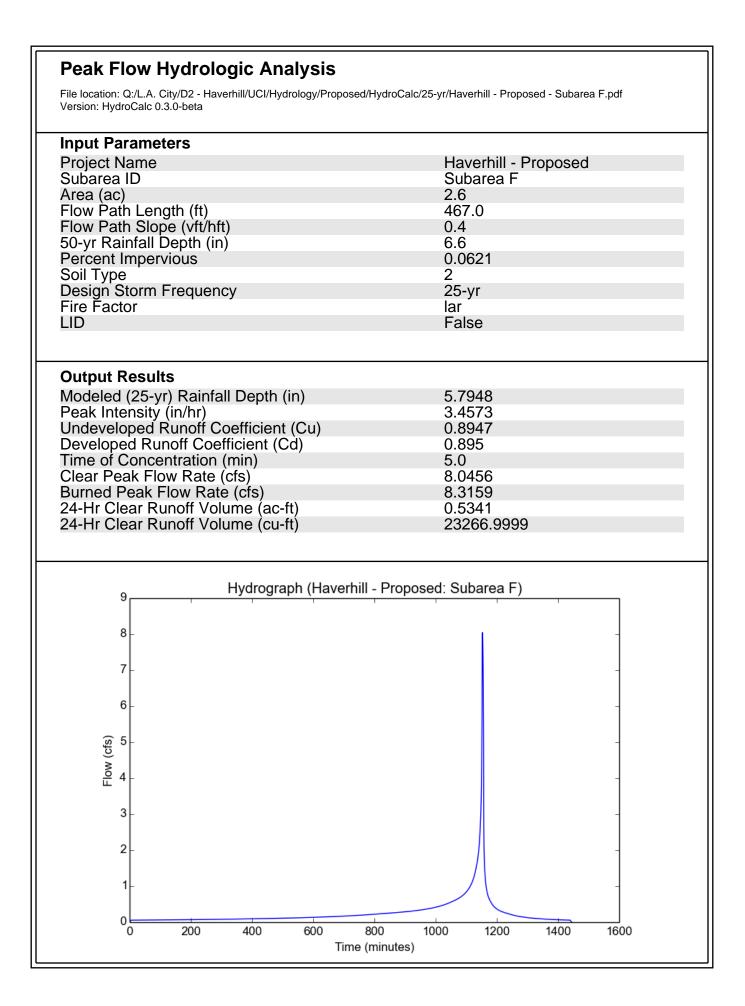


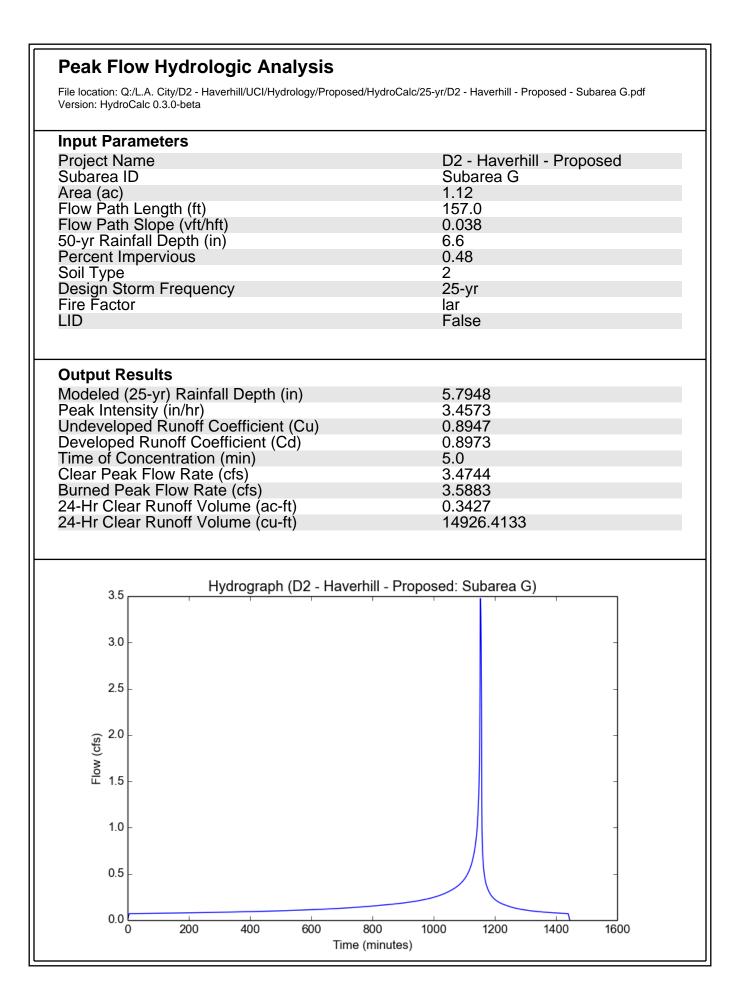

Peak Flow Hydrologic Analysis File location: Q:/L.A. City/D2 - Haverhill/UCI/Hydrology/Proposed/HydroCalc/10-yr/Haverhill - Proposed - Subarea - I.pdf Version: HydroCalc 0.3.0-beta **Input Parameters Project Name** Haverhill - Proposed Subarea ID Subarea - I Area (ac) 0.73 Flow Path Length (ft) 1464.0 Flow Path Slope (vft/hft) 0.061 50-yr Rainfall Depth (in) 6.6 Percent Impervious 1.0 Soil Type 2 **Design Storm Frequency** 10-yr Fire Factor 0 LID False **Output Results** Modeled (10-yr) Rainfall Depth (in) 4.7124 Peak Intensity (in/hr) 1.8631 Undeveloped Runoff Coefficient (Cu) 0.8273 Developed Runoff Coefficient (Cd) 0.9 Time of Concentration (min) 12.0 Clear Peak Flow Rate (cfs) 1.2241 Burned Peak Flow Rate (cfs) 1.2241 24-Hr Clear Runoff Volume (ac-ft) 0.2559 24-Hr Clear Runoff Volume (cu-ft) 11145.7887 Hydrograph (Haverhill - Proposed : Subarea - I) 1.4 1.2 1.0 0.8 8.0 Elow (cfs) 9.0 8.0 0.4 0.2 0.0 200 400 600 800 1000 1200 0 1400 1600 Time (minutes)

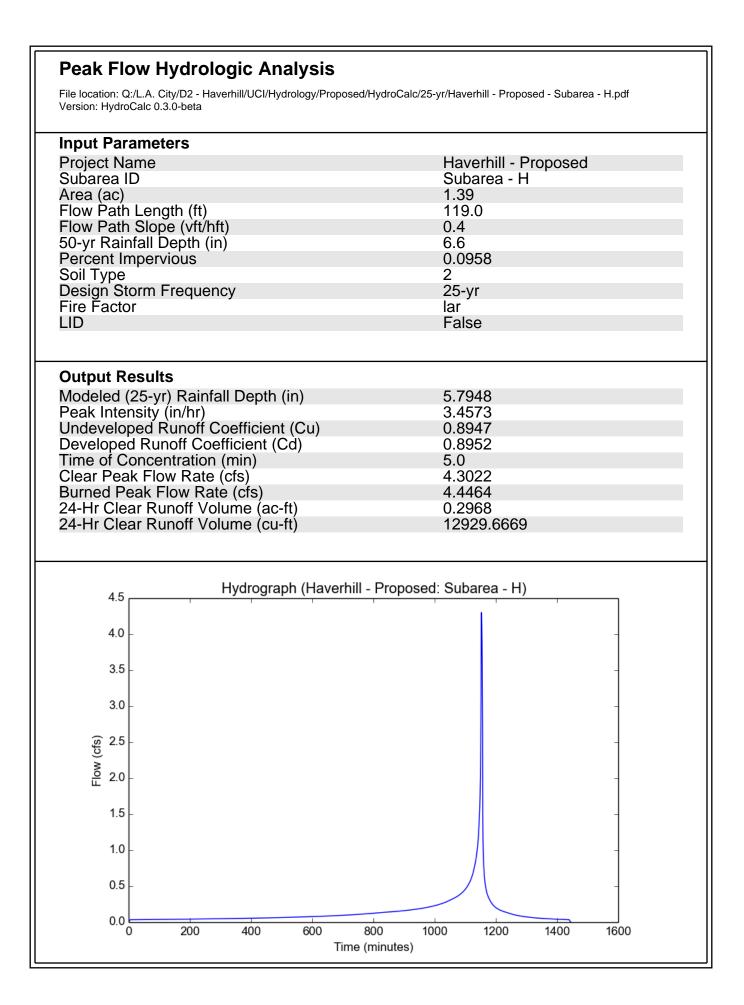


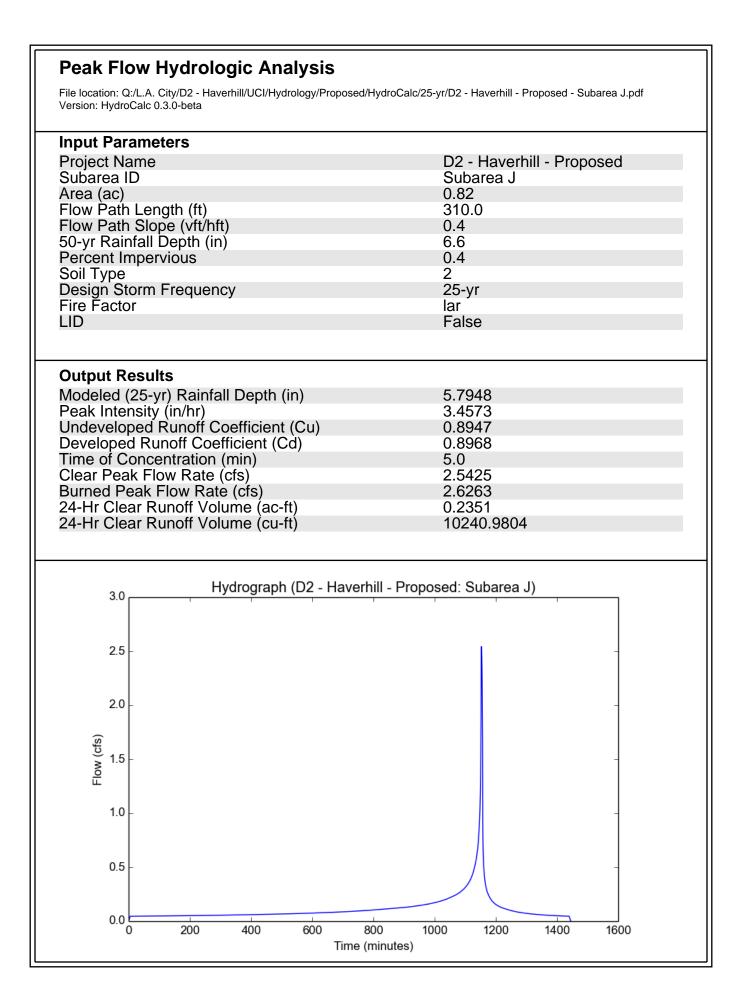


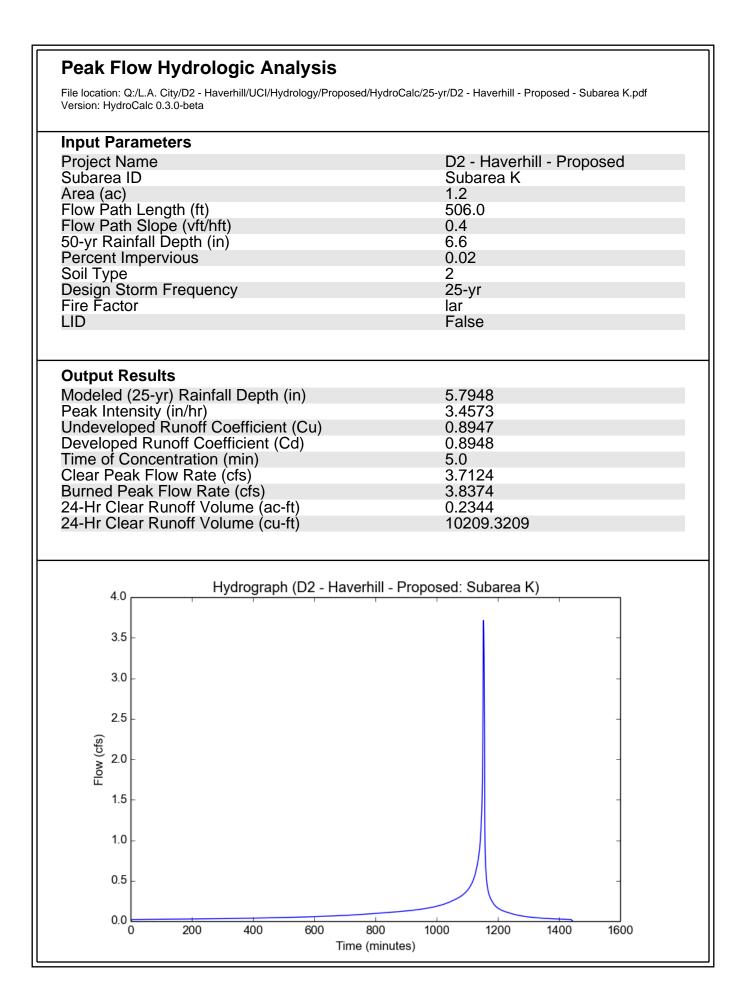


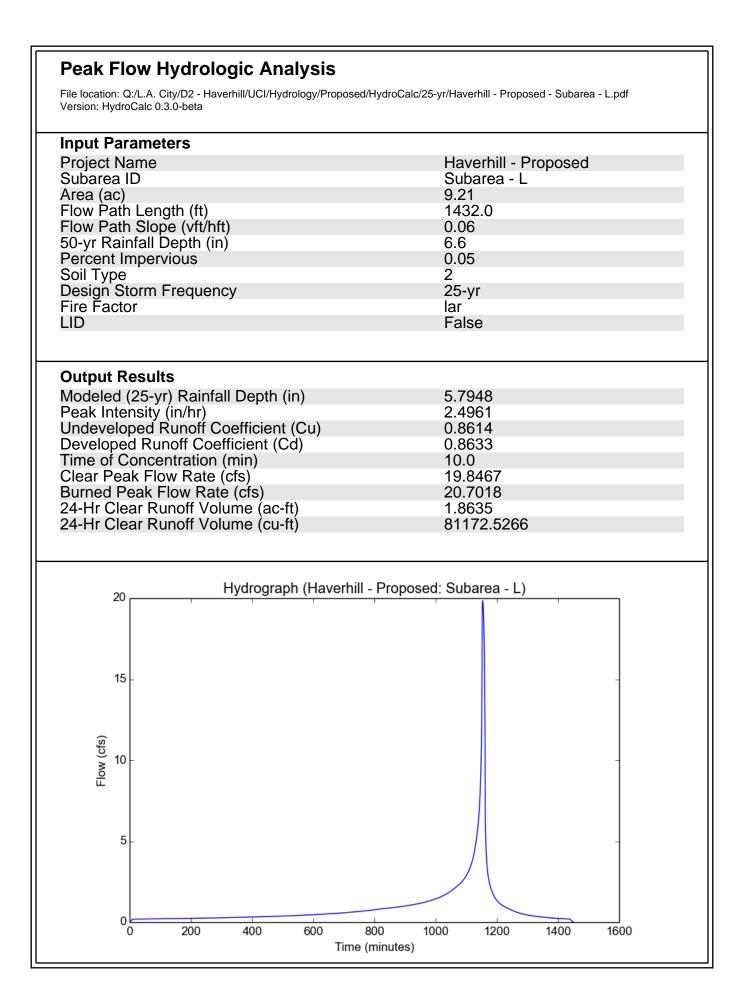


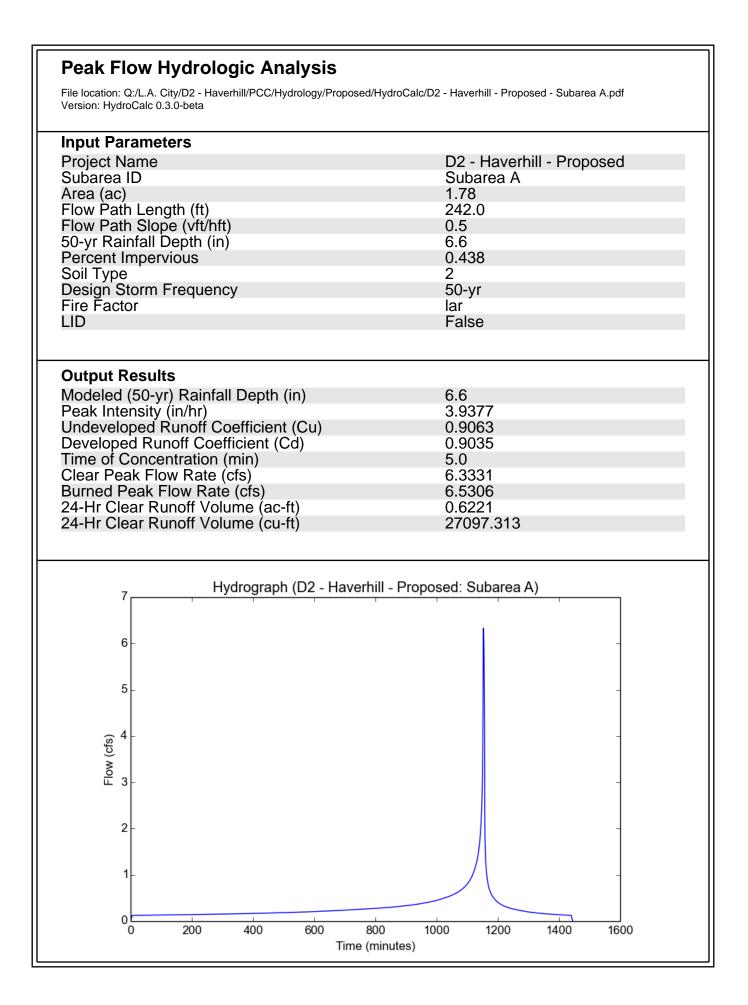


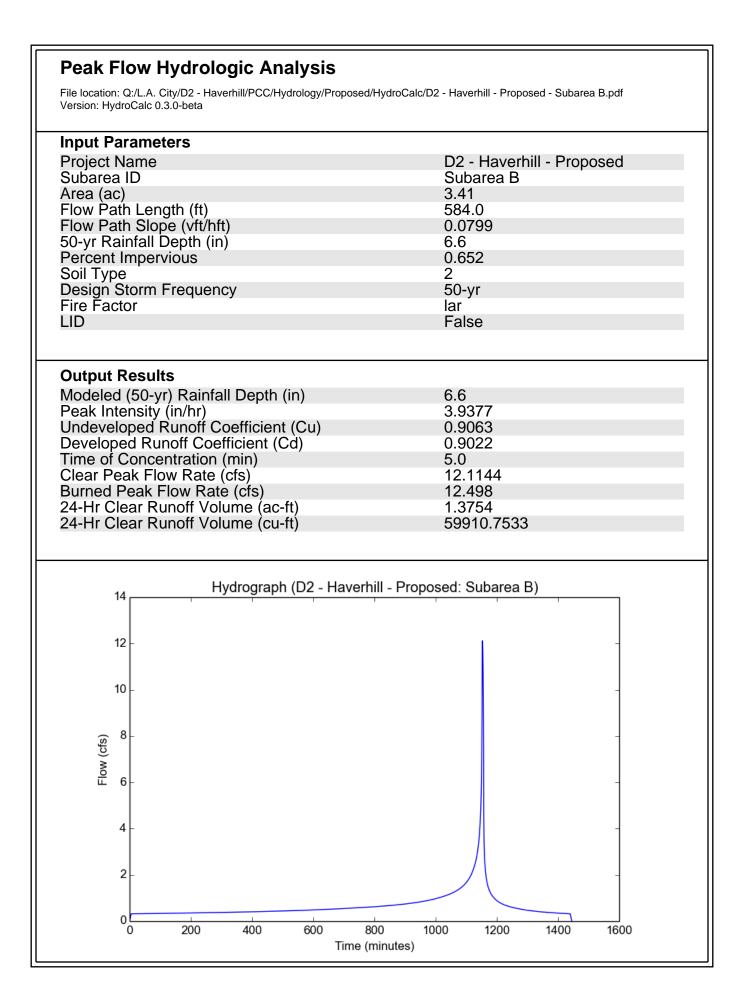


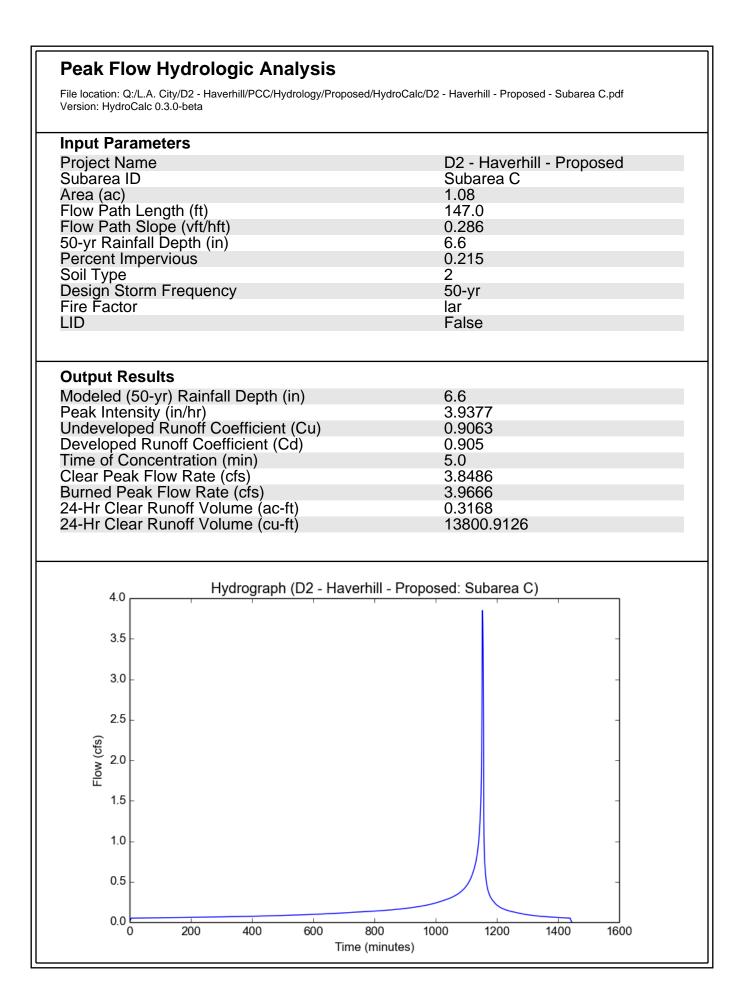


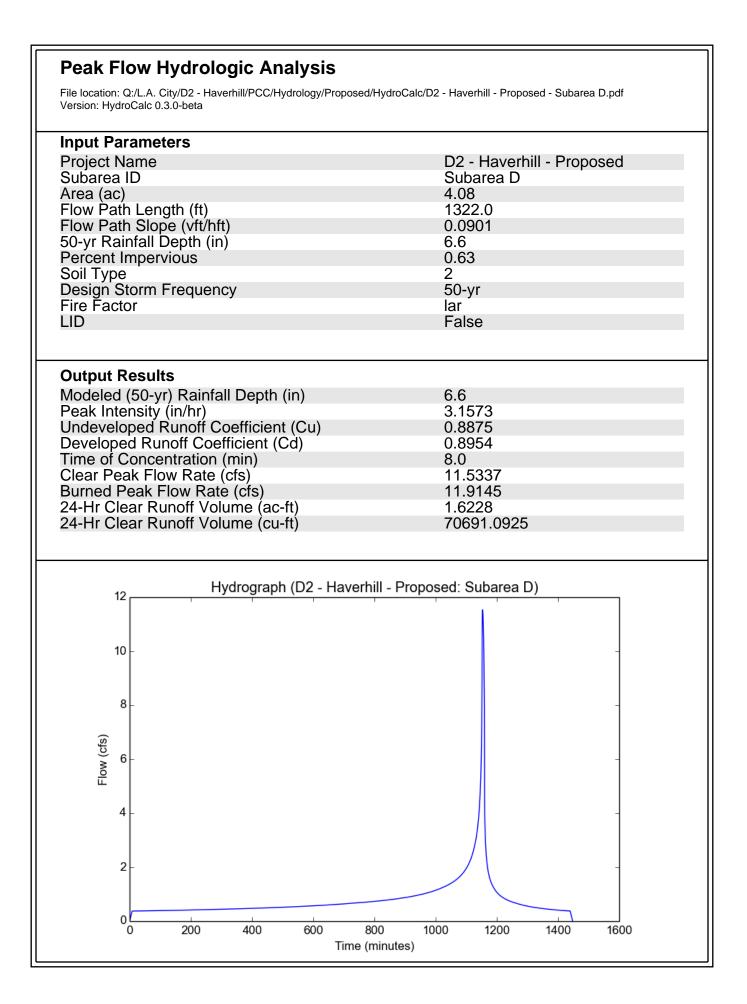


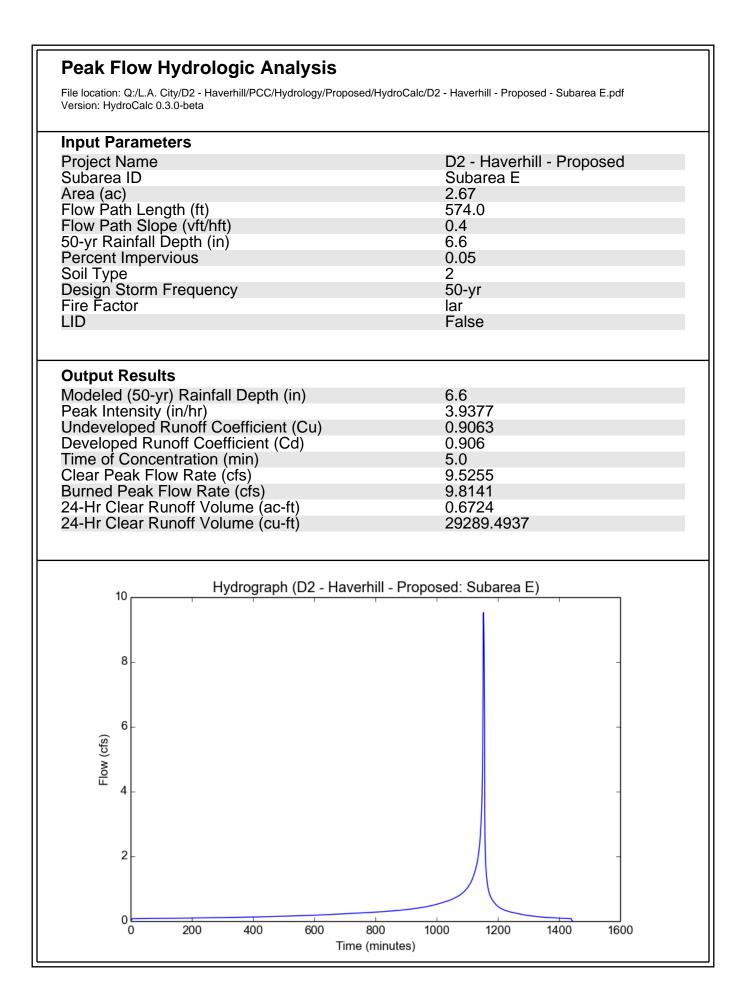


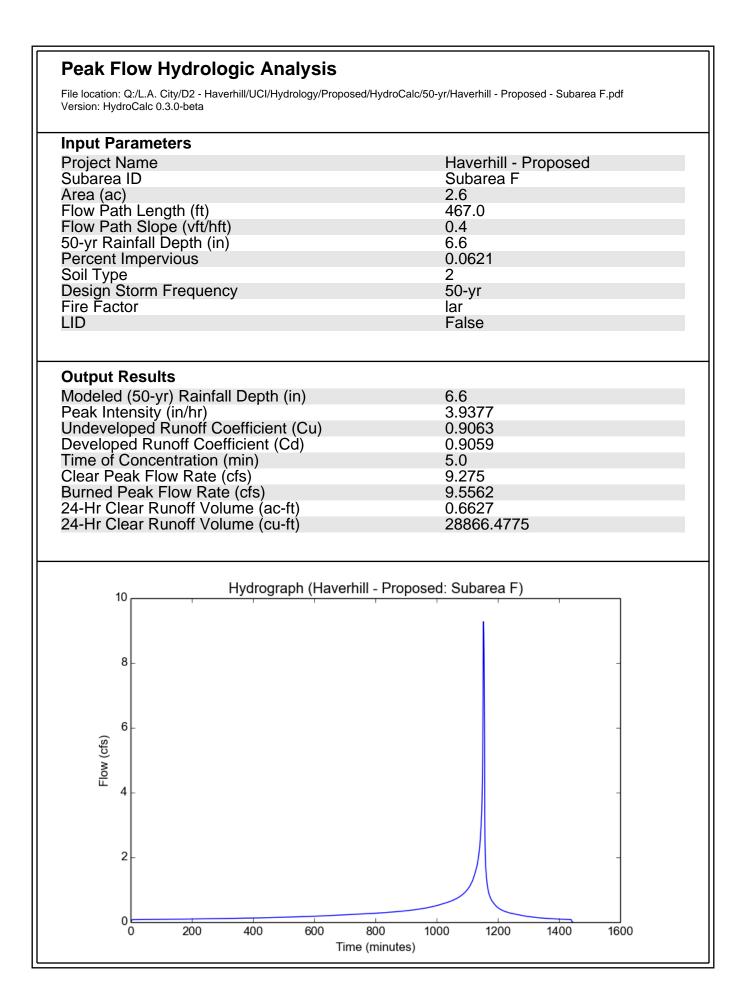


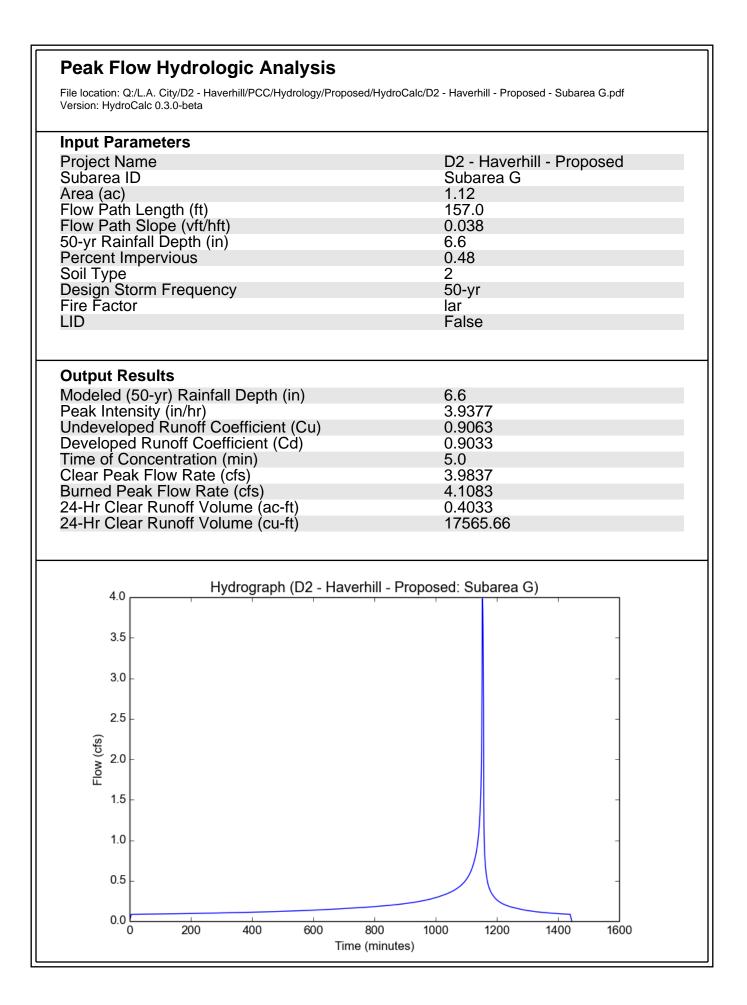

Peak Flow Hydrologic Analysis File location: Q:/L.A. City/D2 - Haverhill/UCI/Hydrology/Proposed/HydroCalc/25-yr/Haverhill - Proposed - Subarea - I.pdf Version: HydroCalc 0.3.0-beta **Input Parameters Project Name** Haverhill - Proposed Subarea ID Subarea - I Area (ac) 0.73 Flow Path Length (ft) 1464.0 Flow Path Slope (vft/hft) 0.061 50-yr Rainfall Depth (in) 6.6 Percent Impervious 1.0 Soil Type 2 **Design Storm Frequency** 25-yr Fire Factor 0 LID False **Output Results** Modeled (25-yr) Rainfall Depth (in) 5.7948 Peak Intensity (in/hr) 2.4961 Undeveloped Runoff Coefficient (Cu) 0.8614 Developed Runoff Coefficient (Cd) 0.9 Time of Concentration (min) 10.0 Clear Peak Flow Rate (cfs) 1.6399 Burned Peak Flow Rate (cfs) 1.6399 24-Hr Clear Runoff Volume (ac-ft) 0.3146 24-Hr Clear Runoff Volume (cu-ft) 13705.8782 Hydrograph (Haverhill - Proposed : Subarea - I) 1.8 1.6 1.4 1.2 0.1 (cfs) 8.0 (cfs) 0.6 0.4 0.2 0.0 200 400 600 800 1000 1200 0 1400 1600 Time (minutes)

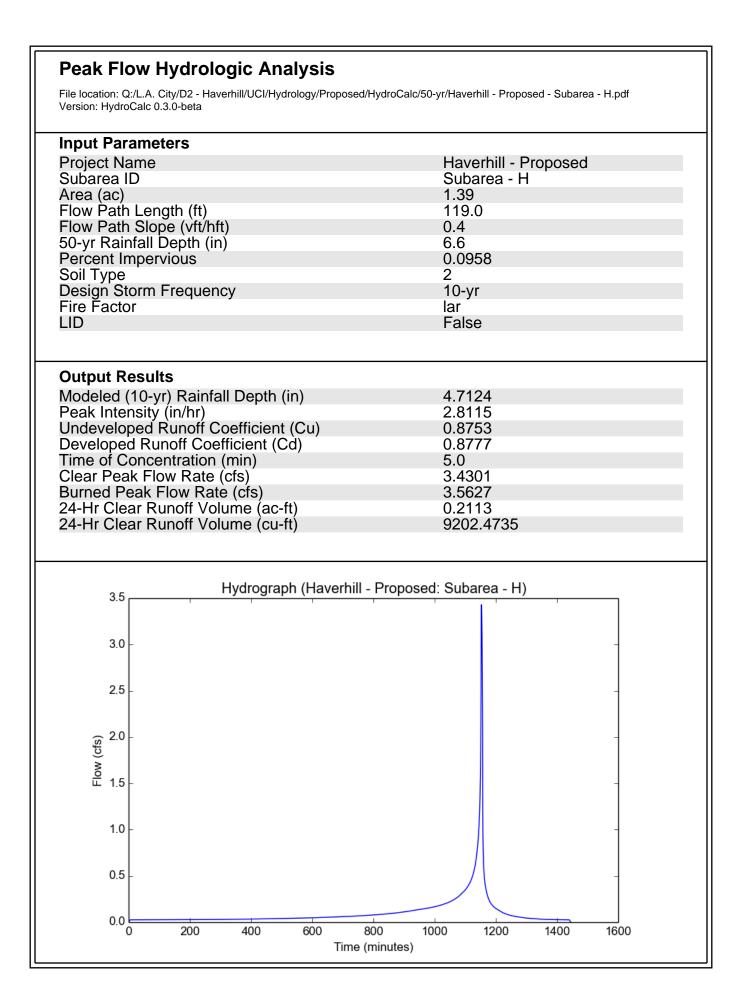


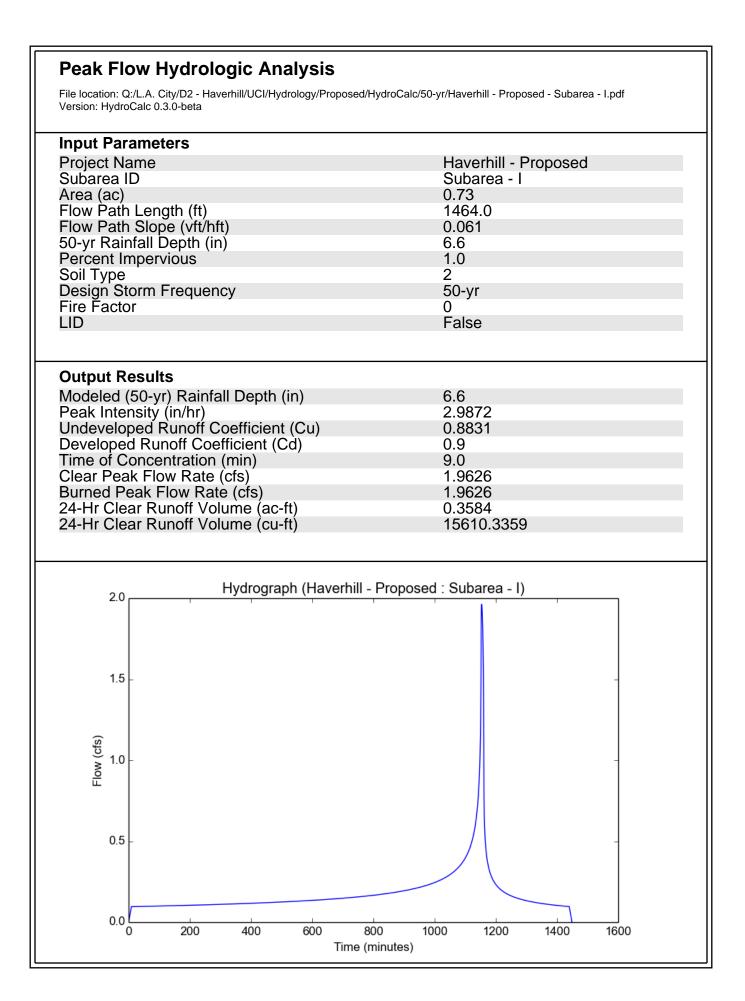


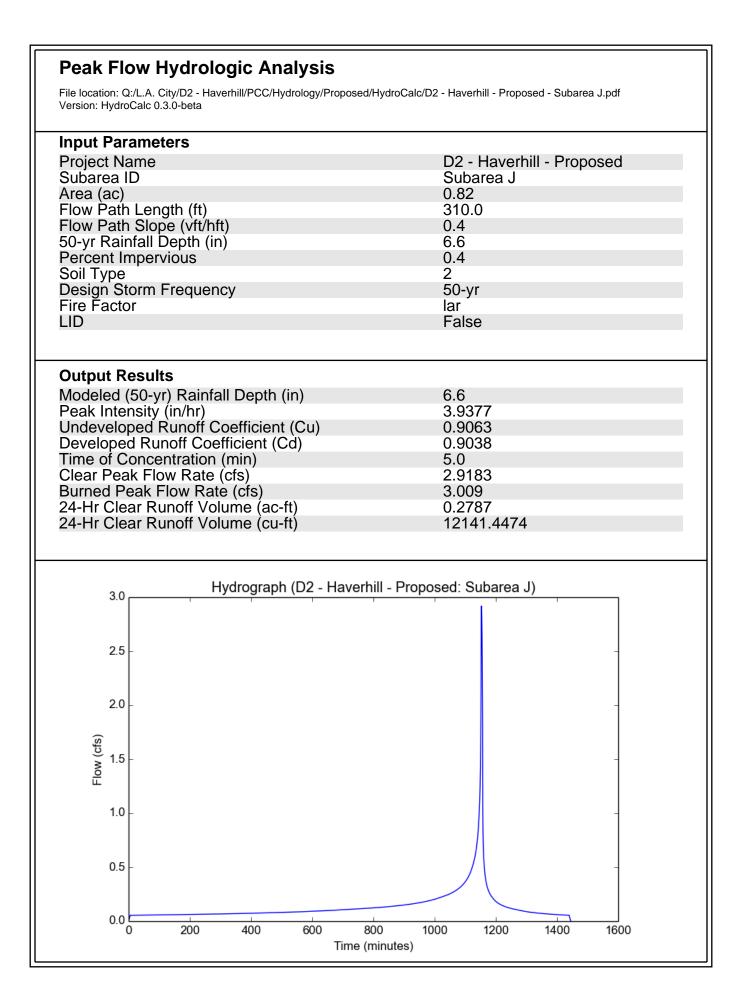


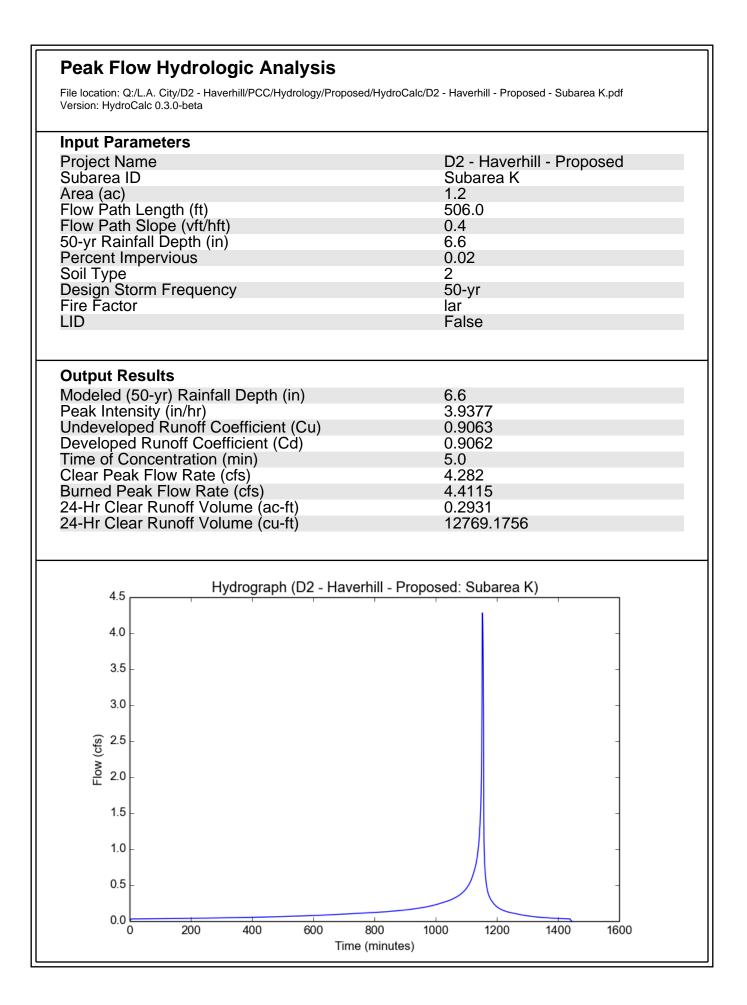


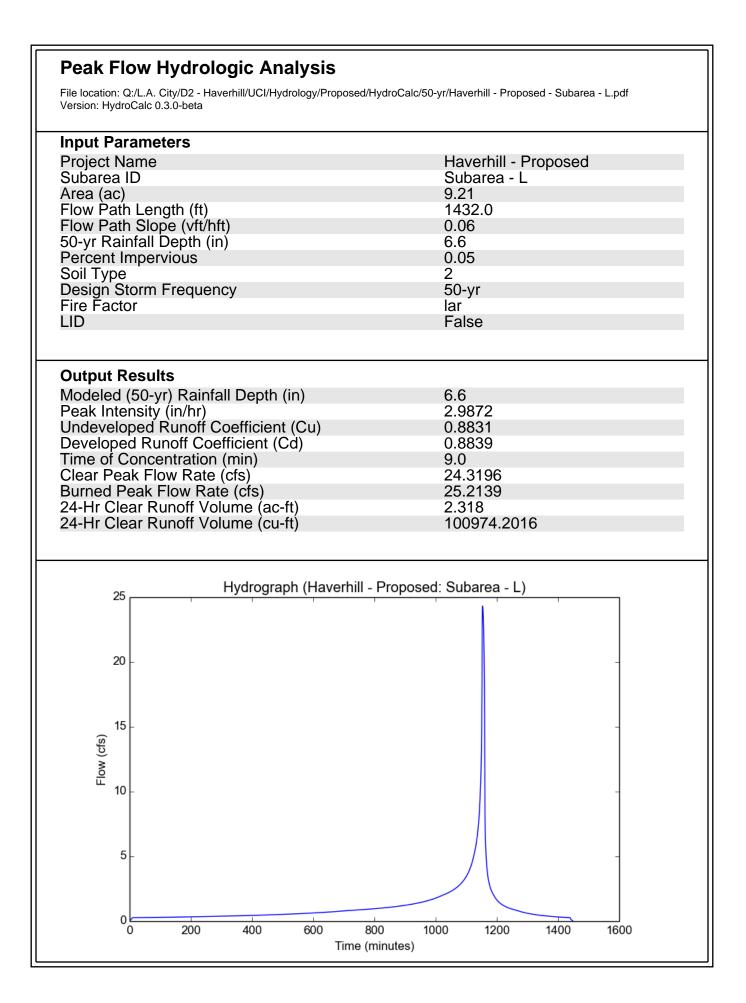












ATTACHMENT B HYDRAULIC CALCULATIONS PER BENTLEY'S FLOWMASTER

Proposed 24" RCP (North) Worksheet for Circular Channel

Project File	e:\drawings\l.	a. city\d2	- haverhill/uci/hydrology/proposed/flowmaster/sd later.fn
Worksheet	Proposed 24"	•	
Flow Element	Circular Chan	nel	
Method	Manning's Fo	rmula	
Solve For	Discharge		
Input Data			
Mannings Coefficien	t 0.013		
Channel Slope	0.4000	DO ft/ft	
Depth	12.0	in	
Diameter	24.00	in	
Results			
Discharge	71.53	cfs	
Flow Area	1.57	ft²	
Wetted Perimeter	3.14	ft	
Top Width	2.00	ft	
Critical Depth	2.00	ft	
Percent Full	50.00		
Critical Slope	0.0959	45 ft/ft	
Velocity	45.54	ft/s	
Velocity Head	32.23	ft	
Specific Energy	33.23	ft	
Froude Number	9.06		
Maximum Discharge	153.90	cfs	
Full Flow Capacity	143.07	cfs	
Full Flow Slope	0.1000	00 ft/ft	
Flow is supercritical.			

Proposed 24" RCP South Worksheet for Circular Channel

Project Description							
Project File	-	-	2 - ha	ve	verhill\uci\l	verhill\uci\hydrology	verhill\uci\hydrology\propos
Worksheet	Proposed 24"	· ,					
Flow Element	Circular Chan						
Method	Manning's Fo	rmula					
Solve For	Discharge						
Input Data				_	<u> </u>	_	—
Mannings Coefficie	nt 0.013						
Channel Slope	0.2000	00 ft/ft					
Depth	12.0	in					
Diameter	24.00	in					
Desults							
Results	50.50	,					
Discharge	50.58	cfs					
Flow Area	1.57	ft²					
Wetted Perimeter	3.14	ft					
Top Width	2.00	ft					
Critical Depth	1.98	ft					
Percent Full	50.00						
Critical Slope	0.0461						
Velocity	32.20	ft/s					
Velocity Head	16.11	ft					
Specific Energy	17.11	ft					
Froude Number	6.41						
Maximum Discharg	e 108.82	cfs					
Full Flow Capacity	101.16	cfs					
Full Flow Slope	0.0500	000 ft/ft					
Flow is supercritical							

Existing Concrete Channel Worksheet for Rectangular Channel

Ducient Deceminti	
Project Description	
Project File	e:\drawings\l.a. city\d2 - haverhill\uci\hydrology\proposed\flowmaster\sd later.fm2
Worksheet	Existing Concrete Channel
Flow Element	Rectangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	

Mannings Coefficient	0.013		
Channel Slope	0.13500	00 ft/ft	
Bottom Width	2.00	ft	
Discharge	12.11	cfs	

Results		
Depth	0.35	ft
Flow Area	0.71	ft²
Wetted Perimeter	2.71	ft
Top Width	2.00	ft
Critical Depth	1.04	ft
Critical Slope	0.0062	98 ft/ft
Velocity	17.15	ft/s
Velocity Head	4.57	ft
Specific Energy	4.92	ft
Froude Number	5.09	
Flow is supercritical.		

Proposed Concrete Channel Worksheet for Rectangular Channel

Project Description	n
Project File	e:\drawings\l.a. city\d2 - haverhill\uci\hydrology\proposed\flowmaster\sd later.fm2
Worksheet	Proposed Concrete Channel
Flow Element	Rectangular Channel
Method	Manning's Formula
Solve For	Channel Depth

Input Data			
Mannings Coefficient	0.013		
Channel Slope	0.2500	00 ft/ft	
Bottom Width	2.50	ft	
Discharge	22.71	cfs	

Results			
Depth	0.37	ft	
Flow Area	0.92	ft²	
Wetted Perimeter	3.24	ft	
Top Width	2.50	ft	
Critical Depth	1.37	ft	
Critical Slope	0.005946 ft/ft		
Velocity	24.70	ft/s	
Velocity Head	9.48	ft	
Specific Energy	9.85	ft	
Froude Number	7.18		
Flow is supercritical.			

Worksheet for Street Capacity for Sundown Drive (GI-1)

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope		0.15000	ft/ft
Discharge		4.19	ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Stati	Ending Station		Roughness Coefficient	
(-0+12,	0.50)	(0+	-00, 0.38)		0.013
Options					
Current Rougnness weighted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.23	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.44	ft²		
Wetted Perimeter		4.54	ft		
Hydraulic Radius		0.10	ft		

Bentley Systems, Inc. Haestad Methods Sol BleatleGeritewMaster V8i (SELECTseries 1) [08.11.01.03]

3/9/2016 10:20:38 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Workshe	et for Street Cap	acity for a	Sundown Drive (GI-1)
Results			
Top Width		4.31	ft
Normal Depth		0.23	ft
Critical Depth		0.41	ft
Critical Slope		0.00481	ft/ft
Velocity		9.42	ft/s
Velocity Head		1.38	ft
Specific Energy		1.61	ft
Froude Number		5.17	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.23	ft
Critical Depth		0.41	ft
Channel Slope		0.15000	ft/ft
Critical Slope		0.00481	ft/ft

Worksheet for Street Capacity for Sundown Drive (GI-1)

Worksheet for Street Capacity for Haverhill Drive (GI-2)

Project Description

Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Channel Slope	0.11550	
Discharge	3.27	ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Statio	on		Roughness Coefficient	
(-0+12,	0.50)	(0+	-00, 0.38)		0.013
Options					
Current Rougnness weignted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.22	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.40	ft²		
Wetted Perimeter		4.26	ft		
Hydraulic Radius		0.09	ft		

 Bentley Systems, Inc.
 Haestad Methods SolBteotle@eFitewMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

3/9/2016 10:23:21 AM

Worksheet for Street Capacity	for Haverhill Drive (GI-2)
--------------------------------------	----------------------------

Desulte

Results				
Top Width		4.03	ft	
Normal Depth		0.22	ft	
Critical Depth		0.39	ft	
Critical Slope		0.00505	ft/ft	
Velocity		8.08	ft/s	
Velocity Head		1.02	ft	
Specific Energy		1.24	ft	
Froude Number		4.50		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
Number Of Steps GVF Output Data				
		0	ft	
GVF Output Data		0		
GVF Output Data Upstream Depth		0		
GVF Output Data Upstream Depth Profile Description		0.00	ft	
GVF Output Data Upstream Depth Profile Description Profile Headloss		0.00	ft	
GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity		0 0.00 0.00 Infinity	ft ft ft/s	
GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity		0 0.00 0.00 Infinity Infinity	ft ft ft/s ft/s	
GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth		0 0.00 0.00 Infinity Infinity 0.22	ft ft ft/s ft/s ft	

Worksheet for Street Capacity for Haverhill Drive (GI-3)

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope Discharge		0.11550 0.25	ft/ft ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+1	2 0.50
-0+1	2 0.00
-0+1	0 0.13
-0+0	8 0.22
-0+0	6 0.29
-0+0	4 0.34
-0+0	2 0.37
0+0	0 0.38

Roughness Segment Definitions

Start Station	Ending Station			Roughness Coefficient	
(-0+12, (0.50)	(0+	00, 0.38)		0.013
Options					
Current Rougnness weigntea Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth	C	0.08	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area	C	0.06	ft²		
Wetted Perimeter	1	1.40	ft		
Hydraulic Radius	C	0.04	ft		

Bentley Systems, Inc. Haestad Methods Sol BleatleGeFiltewMaster V8i (SELECTseries 1) [08.11.01.03]

3/9/2016 10:24:46 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

	Worksheet for Street Capacity for Haverhill Drive (GI-3)	
Results		
Top Width	1.31 ft	
Normal Depth		
Critical Depth	0.15 ft	

0.00648 ft/ft

4.50 ft/s

0.31 ft

0.00648 ft/ft

Critical Slope

Velocity Head

Critical Slope

Velocity

.... 64 1 0 - 4 .

Specific Energy	0.40	ft
Froude Number	3.85	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.08	ft
Critical Depth	0.15	ft
Channel Slope	0.11550	ft/ft

Worksheet for Street Capacity for Sundown Drive (GI-4)

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data 0.15000 ft/ft Channel Slope 0.15000 ft/ft Discharge 0.10 ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Statio	n		Roughness Coefficient	
(-0+12, 0	0.50)	(0+	00, 0.38)		0.013
Options					
Current Rougnness weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.06	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.03	ft²		
Wetted Perimeter		0.94	ft		
Hydraulic Radius		0.03	ft		

Bentley Systems, Inc. Haestad Methods Sol BleiotleGeFitzer/Master V8i (SELECTseries 1) [08.11.01.03]

3/9/2016 10:26:12 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Workshe	eet for Street Cap	acity for	Sundown Drive (GI-4)
Results			
Top Width		0.88	ft
Normal Depth		0.06	ft
Critical Depth		0.10	ft
Critical Slope		0.00726	ft/ft
Velocity		3.97	ft/s
Velocity Head		0.25	ft
Specific Energy		0.30	ft
Froude Number		4.14	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.06	ft
Critical Depth		0.10	ft
Channel Slope		0.15000	ft/ft
Critical Slope		0.00726	ft/ft

14/ ---. -

Worksheet for Street Capacity for Brilliant Drive (GI-5)

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Input Data		
Channel Slope	0.20000	ft/ft
Discharge	3.05	ft³/s
	Normal Depth 0.20000	ft/ft ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Sta	ition		Roughness Coefficient	
(-0+12,	0.50)	(0+	00, 0.38)		0.013
Options					
Current Rougnness weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.20	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.31	ft²		
Wetted Perimeter		3.66	ft		
Hydraulic Radius		0.08	ft		

Bentley Systems, Inc. Haestad Methods SolBteatlegeFitter/Master V8i (SELECTseries 1) [08.11.01.03]

3/9/2016 10:27:05 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

	Worksheet for Street Capacity for Brilliant Drive (GI-5)			
Results				
Top Width	3.46 ft			
Normal Depth	0.20 ft			
Critical Depth	0.38 ft			

0.00512 ft/ft 9.87 ft/s

1.51 ft

0.20000 ft/ft 0.00512 ft/ft

Critical Slope

Velocity Head

Channel Slope

Critical Slope

Velocity

.... - -... -. -. . -. . -

Specific Energy	1.71	
Froude Number Flow Type	5.82 Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.20	ft
Critical Depth	0.38	ft

Worksheet for Street Capacity for Haverhill Way (GI-6)

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.20000	ft/ft
Discharge	1.41	ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Sta	tion		Roughness Coefficient	
(-0+12,	0.50)	(0+	-00, 0.38)		0.013
Options					
Current Rougnness weigntea Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.15	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.17	ft²		
Wetted Perimeter		2.54	ft		
Hydraulic Radius		0.07	ft		

 Bentley Systems, Inc.
 Haestad Methods SolBteotle@eFitewMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Top Width2.39ftNormal Depth0.15ftCritical Depth0.28ftCritical Slope0.00529ft/ftVelocity8.39ft/sVelocity Head1.09ftSpecific Energy1.24ftFroude Number5.585Flow TypeSupercriticalOverstream Depth0.00ftLength0.00ftNumber Of Steps0fOverstream Depth0.00ftProfile Description1Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ftCritical Slope0.20000ft/ft	Results			
Critical Depth0.28ftCritical Slope0.00529ft/ftVelocity8.39ft/sVelocity Head1.09ftSpecific Energy1.24ftFroude Number5.58Flow TypeSupercriticalOverstream Depth0.00ftLength0.00ftNumber Of Steps0ftOverstream Depth0.00ftProfile Description0ftProfile Headloss0.00ftDownstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.288ftCritical Depth0.2000ft/ft	Top Width	2.3	9 f	ft
Critical Slope0.00529ft/ftVelocity8.39ft/sVelocity Head1.09ftSpecific Energy1.24ftFroude Number5.58Flow TypeSupercriticalOVER Input DataOverstream Depth0.00ftLength0.00ftNumber Of Steps0ftProfile DescriptionProfile Headloss0.00ftDownstream VelocityInfinityft/sQuestream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.28ftCritical Depth0.28ft	Normal Depth	0.1	5 f	ft
Velocity8.39ft/sVelocity Head1.09ftSpecific Energy1.24ftFroude Number5.58Flow TypeSupercriticalOverstream Depth0.00ftLength0.00ftNumber Of Steps0ftOVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.208ftOthen Plot0.208ft	Critical Depth	0.2	3 f	ft
Velocity Head1.09ftSpecific Energy1.24ftFroude Number5.58Flow TypeSupercriticalOurstream Depth0.00ftLength0.00ftNumber Of Steps0ftOVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sOrmal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ft	Critical Slope	0.0052	9 f	ft/ft
Specific Energy1.24ftFroude Number5.58Flow TypeSupercriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0TGVF Output DataUpstream Depth0.00ftProfile DescriptionrtProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.208ftChannel Slope0.20000ft/ft	Velocity	8.3	9 f	ft/s
Froude Number5.58Flow TypeSupercriticalGVF Input Data0.00Downstream Depth0.00Length0.00Number Of Steps0GVF Output Data0Upstream Depth0.00Profile Description1Profile Headloss0.00Profile Headloss0.00Upstream VelocityInfinityIf/s1Upstream VelocityInfinityft/s0.15Critical Depth0.2000ft/0.2000	Velocity Head	1.09	9 f	ft
Flow TypeSupercriticalGVF Input Data0.00ftDownstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output Data1Upstream Depth0.00ftProfile Description1Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth0.15ftCritical Depth0.2000ft/ft	Specific Energy	1.24	1 f	ft
GVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output DataUpstream Depth0.00ftProfile Description7Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sChannel Slope0.2000ft/ft	Froude Number	5.5	3	
Downstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output DataUpstream Depth0.00ftProfile Description0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.28ft	Flow Type	Supercritical		
Length0.00ftNumber Of Steps00GVF Output DataUpstream Depth0.00ftProfile Description100ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sOxomal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ft	GVF Input Data			
Number Of Steps0GVF Output DataUpstream Depth0.00ftProfile Description0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.2000ft/ft	Downstream Depth	0.0) f	ft
GVF Output DataUpstream Depth0.00ftProfile DescriptionProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.2000ft/ft	Length	0.0) f	ft
Upstream Depth0.00ftProfile Description0.00ftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ft	Number Of Steps)	
Profile DescriptionProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ft	GVF Output Data			
Profile DescriptionProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ft	Upstream Depth	0.0) f	ft
Downstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ft				
Upstream VelocityInfinityft/sNormal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ft	Profile Headloss	0.0) f	ft
Normal Depth0.15ftCritical Depth0.28ftChannel Slope0.20000ft/ft	Downstream Velocity	Infinit	/ f	ft/s
Critical Depth0.28ftChannel Slope0.20000ft/ft	Upstream Velocity	Infinit	/ f	ft/s
Channel Slope 0.20000 ft/ft	Normal Depth	0.1	5 f	ft
	Critical Depth	0.20	3 f	ft
Critical Slope 0.00529 ft/ft	Channel Slope	0.2000) f	ft/ft
	Critical Slope	0.0052	9 f	ft/ft

Worksheet for Street Capacity for Haverhill Way (GI-7)

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope	(0.11750	ft/ft
Discharge		0.61	ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Station		Roughness Coefficient	
(-0+12, 0.	.50) (0+00, 0.38)		0.013
Options				
Method	Pavlovskii's Method Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	0.1	2 ft		
Elevation Range	0.00 to 0.50 ft			
Flow Area	0.1	1 ft²		
Wetted Perimeter	1.9	14 ft		
Hydraulic Radius	0.0	6 ft		

 Bentley Systems, Inc.
 Haestad Methods SolBteotle@eFitewMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

3/9/2016 10:29:09 AM

Worksh	eet for Street Ca	pacity for	Haverhill Way (GI-7)
Results			
Top Width		1.82	ft
Normal Depth		0.12	ft
Critical Depth		0.21	ft
Critical Slope		0.00583	ft/ft
Velocity		5.67	ft/s
Velocity Head		0.50	ft
Specific Energy		0.62	ft
Froude Number		4.11	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.12	ft
Critical Depth		0.21	ft
Channel Slope		0.11750	ft/ft
Critical Slope		0.00583	ft/ft

Worksheet for Street Capacity for Haverhill Way (GI-7)

Worksheet for Street Capacity for Haverhill Way (GI-8)

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.13950 ft/f	t
Discharge	0.21 ft³/	's

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending	Station		Roughness Coefficient	
(-0+12,	0.50)	(0+	00, 0.38)		0.013
Options					
Current Rougnness weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.08	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.04	ft²		
Wetted Perimeter		1.26	ft		
Hydraulic Radius		0.04	ft		

 Bentley Systems, Inc.
 Haestad Methods SolBteotle@eFitewMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

- II

Results				
Top Width		1.18	ft	
Normal Depth		0.08	ft	
Critical Depth		0.14	ft	
Critical Slope		0.00661	ft/ft	
Velocity		4.67	ft/s	
Velocity Head		0.34	ft	
Specific Energy		0.42	ft	
Froude Number		4.21		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.08	ft	
Critical Depth		0.14	ft	
Channel Slope		0.13950	ft/ft	

Worksheet for Street Capacity for Haverhill Way @ Warped (GI-9)

Project Description

Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Channel Slope		0.06320	ft/ft
Discharge		0.16	ft³/s

Section Definitions

Station (ft)		Elevation (ft)	
	-0+12		0.50
	-0+12		0.00
	-0+10		0.13
	-0+08		0.22
	-0+06		0.29
	-0+04		0.34
	-0+02		0.37
	0+00		0.38

Roughness Segment Definitions

Start Station	Ending Statio	on		Roughness Coefficient	
(a. ta				0	
(-0+12,	0.50)	(0+	00, 0.38)		0.013
Options					
Current Rougnness weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.08	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.05	ft²		
Wetted Perimeter		1.32	ft		
Hydraulic Radius		0.04	ft		

Bentley Systems, Inc. Haestad Methods Sol BeiotleGeFitzer/Master V8i (SELECTseries 1) [08.11.01.03]

3/9/2016 10:31:17 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet fo	or Street Capacity	y for Have	rhill Way @ Warped (G	-9)
Results				
Top Width		1.24	ft	
Normal Depth		0.08	ft	
Critical Depth		0.12	ft	
Critical Slope		0.00682	ft/ft	
Velocity		3.22	ft/s	
Velocity Head		0.16	ft	
Specific Energy		0.24	ft	
Froude Number		2.83		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.08	ft	
Critical Depth		0.12	ft	
Channel Slope		0.06320	ft/ft	
Critical Slope		0.00682	ft/ft	

Worksheet for Street Canacity for Haverhill Way @ Warned (GI-9)

Worksheet for Street Capacity for Haverhill Drive (GI-10)

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope	0.14	4310	ft/ft
Discharge		0.94	ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Station		Roughness Coefficient	
(-0+12, 0	-	(0+00, 0.38)		0.013
	,	(
Options				
Current Rougnness vveignted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	0).13 ft		
Elevation Range	0.00 to 0.50 ft			
Flow Area	0).14 ft²		
Wetted Perimeter	2	2.23 ft		
Hydraulic Radius	0	0.06 ft		

Bentley Systems, Inc. Haestad Methods Sol BleatleGeFiltewMaster V8i (SELECTseries 1) [08.11.01.03]

3/9/2016 10:32:28 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

worksneet	for Street Capacity for	Havernin Drive (GI-10)
Results		
Top Width	2.09	ft
Normal Depth	0.13	ft
Critical Depth	0.24	ft
Critical Slope	0.00555	ft/ft
Velocity	6.79	ft/s
Velocity Head	0.72	ft
Specific Energy	0.85	ft
Froude Number	4.65	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.13	ft
Critical Depth	0.24	ft
Channel Slope	0.14310	ft/ft
Critical Slope	0.00555	ft/ft

Worksheet for Street Capacity for Haverhill Drive (GI-10)

Worksheet for Street Capacity for Brilliant Drive (GI-11)

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.200	000 ft/ft
Discharge	0.	.89 ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Stati	on		Roughness Coefficient	Roughness Coefficient	
(-0+12,	0.50)	(0+	+00, 0.38)		0.013	
Options						
Current Rougnness weighted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method					
Closed Channel Weighting Method	Pavlovskii's Method					
Results						
Normal Depth		0.12	ft			
Elevation Range	0.00 to 0.50 ft					
Flow Area		0.12	ft²			
Wetted Perimeter		2.02	ft			
Hydraulic Radius		0.06	ft			

Bentley Systems, Inc. Haestad Methods SolBteatlegeritzewMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

3/9/2016 10:33:20 AM

Results			
Top Width		1.89	ft
Normal Depth		0.12	ft
Critical Depth		0.24	ft
Critical Slope		0.00558	ft/ft
Velocity		7.65	ft/s
Velocity Head		0.91	ft
Specific Energy		1.03	ft
Froude Number		5.44	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.12	ft
Critical Depth		0.24	ft
Channel Slope		0.20000	ft/ft
Critical Slope		0.00558	ft/ft

Worksheet for Capacity for Haverhill Way (GI-12)

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope		0.02580	ft/ft
Discharge		1.22	ft³/s

Section Definitions

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

Roughness Segment Definitions

Start Station	Ending Statio	on		Roughness Coefficient	
(-0+12,	0.50)	(0+	-00, 0.38)		0.013
Options					
Current Rougnness weignted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.20	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.34	ft²		
Wetted Perimeter		3.84	ft		
Hydraulic Radius		0.09	ft		

Bentley Systems, Inc. Haestad Methods Sol BtentlegeFitter/Master V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Capacity for Haverhill Way (GI-12)

Results			
Top Width		3.63	ft
Normal Depth		0.20	ft
Critical Depth		0.27	ft
Critical Slope		0.00539	ft/ft
Velocity		3.63	ft/s
Velocity Head		0.20	ft
Specific Energy		0.41	ft
Froude Number		2.10	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.20	ft
Critical Depth		0.27	ft
Channel Slope		0.02580	ft/ft
Critical Slope		0.00539	ft/ft

Worksheet for Capacity for Haverhill Way (GI-13)

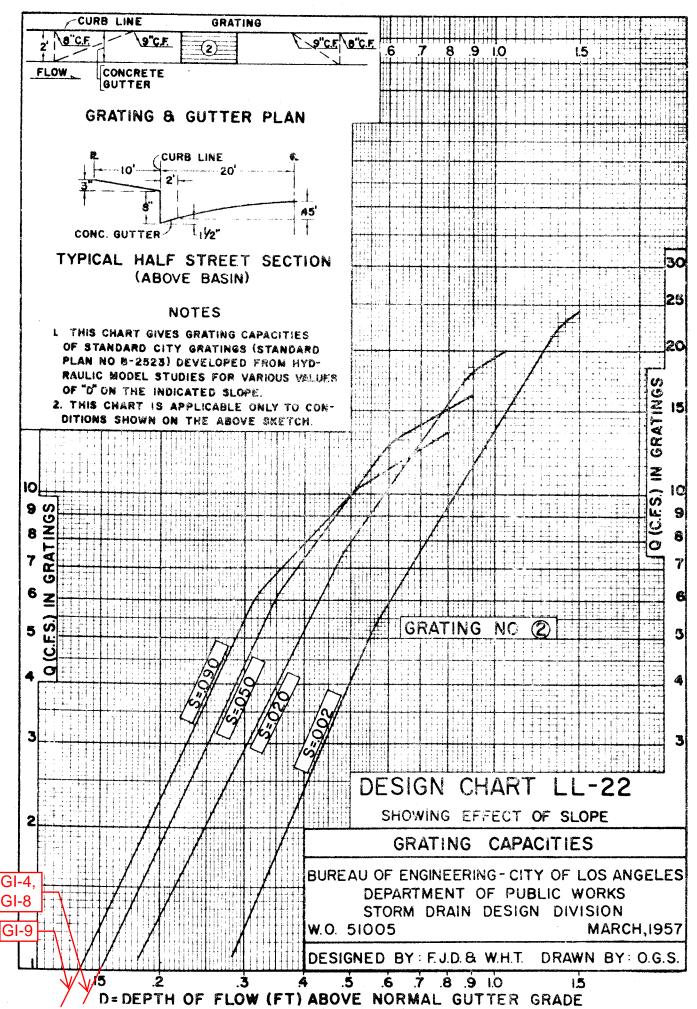
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.03800	ft/ft
Discharge	0.08	ft³/s
Section Definitions		

Station (ft)	Elevation (ft)
-0+12	0.50
-0+12	0.00
-0+10	0.13
-0+08	0.22
-0+06	0.29
-0+04	0.34
-0+02	0.37
0+00	0.38

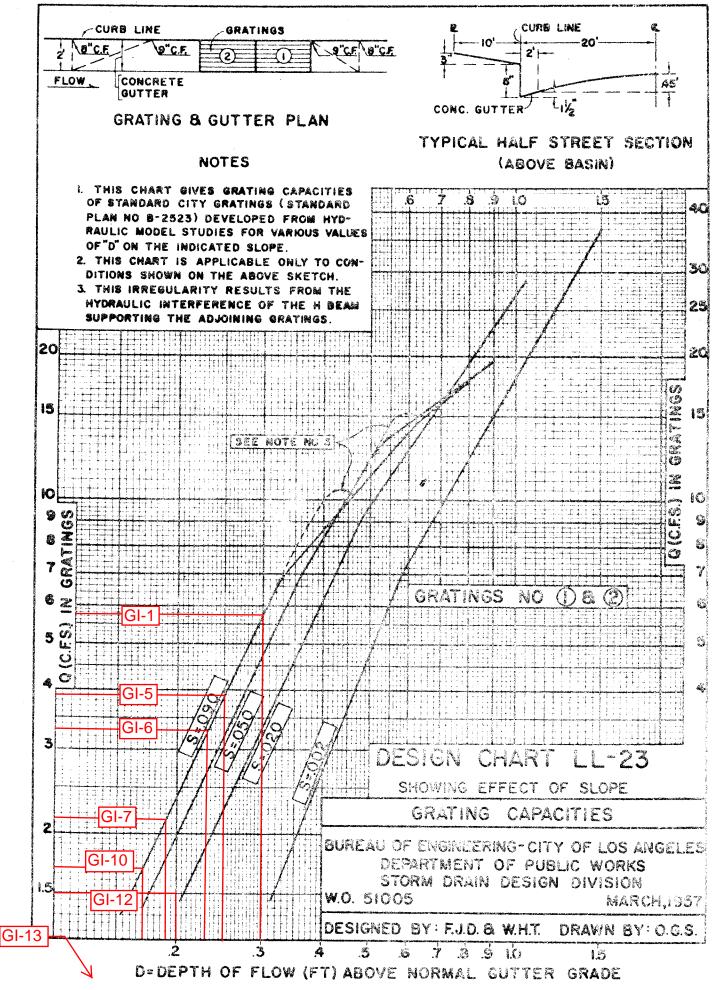
Roughness Segment Definitions

Start Station	Ending Statio	on		Roughness Coefficient	
(-0+12,	0.50)	(0+	-00, 0.38)		0.013
Options					
Current Rougnness weighted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.07	ft		
Elevation Range	0.00 to 0.50 ft				
Flow Area		0.04	ft²		
Wetted Perimeter		1.12	ft		
Hydraulic Radius		0.03	ft		

Bentley Systems, Inc. Haestad Methods SolBteatlegeFitter/Master V8i (SELECTseries 1) [08.11.01.03]


3/9/2016 10:35:00 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2


Worksheet for Capacity for Haverhill Way (GI-13)

Results			
Top Width		1.05	ft
Normal Depth		0.07	ft
Critical Depth		0.09	ft
Critical Slope		0.00748	ft/ft
Velocity		2.24	ft/s
Velocity Head		0.08	ft
Specific Energy		0.15	ft
Froude Number		2.14	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.07	ft
Critical Depth		0.09	ft
Channel Slope		0.03800	ft/ft
Critical Slope		0.00748	ft/ft

OFFICE STANDARD NO 108

OFFICE STANDARD NO 108

Worksheet for Capacity - 27" RCP Lateral

Project Description				
Friction Method	Manning Formula			
Solve For	Discharge			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.20000	ft/ft	
Normal Depth		2.25	ft	
Diameter		2.25	ft	
Results				
Discharge		138.50	ft³/s	
Flow Area		3.98	ft²	
Wetted Perimeter		7.07	ft	
Hydraulic Radius		0.56	ft	
Top Width		0.00	ft	
Critical Depth		2.25	ft	
Percent Full		100.0	%	
Critical Slope		0.19605	ft/ft	
Velocity		34.83	ft/s	
Velocity Head		18.86	ft	
Specific Energy		21.11	ft	
Froude Number		0.00		
Maximum Discharge		148.98	ft³/s	
Discharge Full		138.50	ft³/s	
Slope Full		0.20000	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		100.00	%	
Downstream Velocity		Infinity	ft/s	

 Bentley Systems, Inc.
 Haestad Methods SolBteotleGeFitter/Master V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for Capacity - 27" RCP Lateral

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	2.25	ft
Critical Depth	2.25	ft
Channel Slope	0.20000	ft/ft
Critical Slope	0.19605	ft/ft

Worksheet for Capacity - Division St.

Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			
Channel Slope	0.06	500	ft/ft
Normal Depth	(0.50	ft

Section Definitions

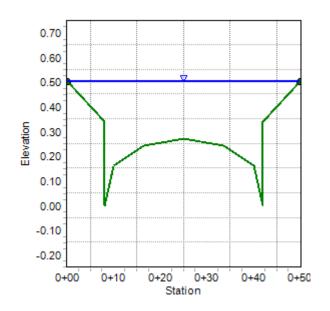
Station (ft)	Elevation (ft)
0+00	0.50
0+08	0.34
0+08	0.00
0+10	0.16
0+17	0.24
0+25	0.27
0+34	0.24
0+40	0.16
0+42	0.00
0+42	0.34
0+50	0.50

Roughness Segment Definitions

Start Station		Ending Station		Roughness Coefficient	
(0+(0, 0.50)	(0+	50, 0.50)		0.013
Options					
Current Rougnness Weigntea Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Metł Pavlovskii's Metł Pavlovskii's Metł	nod			
Results					
Discharge Elevation Range	0.00 to 0.50 ft	116.19	ft³/s		

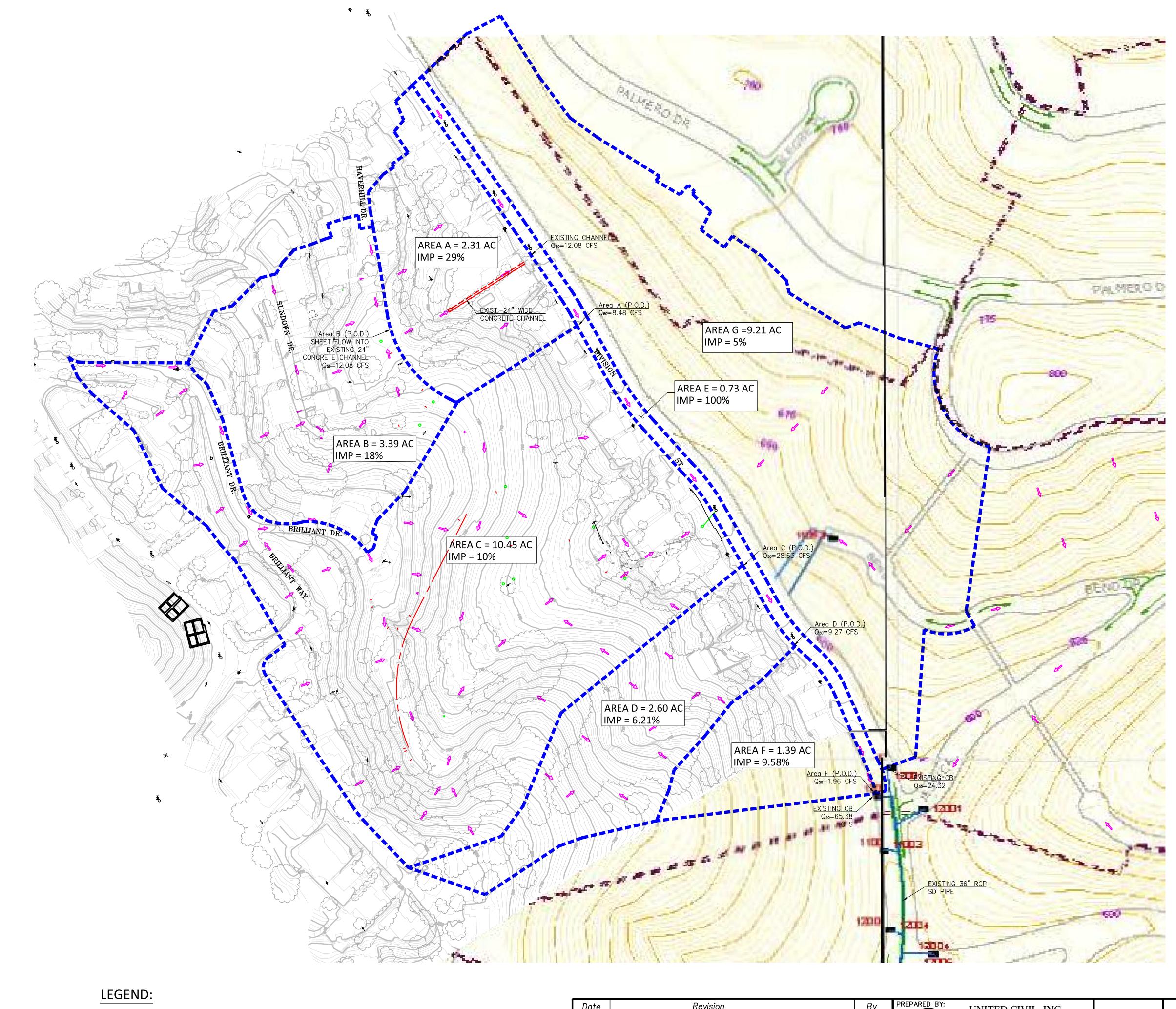
Bentley Systems, Inc. Haestad Methods SolBteatleGeFitterwMaster V8i (SELECTseries 1) [08.11.01.03]

3/9/2016 10:41:28 AM


27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Wetted Perimeter 50.70 ft Hydraulic Radius 0.22 ft Top Width 50.00 ft Normal Depth 0.50 ft Critical Depth 0.83 ft Critical Slope 0.00311 ft/ft Velocity 10.54 ft/s Velocity Head 1.73 ft Specific Energy 2.23 ft Froude Number Supercritical ft Specific Energy 2.23 ft Froude Number Supercritical ft Specific Energy 2.23 ft Specific Energy Supercritical ft Supercritical ft ft Downstream Depth 0.00 ft Profile Description ft ft <t< th=""><th></th><th>Worksheet for Capacity</th><th>- Division St.</th><th></th></t<>		Worksheet for Capacity	- Division St.	
Wetted Perimeter 50.70 ft Hydraulic Radius 0.22 ft Top Width 50.00 ft Normal Depth 0.50 ft Critical Depth 0.83 ft Critical Slope 0.00311 ft/ft Velocity 10.54 ft/s Velocity Head 1.73 ft Specific Energy 2.23 ft Froude Number Supercritical ft Specific Energy 2.23 ft Froude Number Supercritical ft Specific Energy 2.23 ft Specific Energy Supercritical ft Supercritical ft ft Downstream Depth 0.00 ft Profile Description ft ft <t< th=""><th>Results</th><th></th><th></th><th></th></t<>	Results			
Hydraulic Radius 0.22 ft Top Width 50.00 ft Top Width 5.00 ft Normal Depth 0.50 ft Critical Depth 0.83 ft Critical Slope 0.00311 ft/ft Velocity 10.54 ft/s Velocity Head 1.73 ft Specific Energy 2.23 ft Froude Number 3.96	Flow Area	11.(03 ft²	
Top Width 50.00 ft Normal Depth 0.50 ft Critical Depth 0.83 ft Critical Slope 0.00311 ft/ft Velocity 10.54 ft/s Velocity Head 1.73 ft Specific Energy 2.23 ft Froude Number 3.96 Fow Type Supercritical 0.00 ft Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft Profile Description ft ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 0.00 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 0.50 ft Critical Depth 0.83 ft Critical Depth 0.6500 ft/ft	Wetted Perimeter	50.7	70 ft	
Normal Depth 0.50 ft Critical Depth 0.83 ft Critical Slope 0.00311 ft/ft Velocity 10.54 ft/s Velocity Head 1.73 ft Specific Energy 2.23 ft Froude Number 3.96 respecific Energy Flow Type Supercritical respecific Energy OVEr Input Data 0.00 ft Length 0.00 ft Number Of Steps 0 ft Profile Description 1 ft/s Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 0.00 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 0.50 ft Critical Depth 0.83 ft Critical Depth 0.8650 ft/ft	Hydraulic Radius	0.2	22 ft	
Critical Depth 0.83 ft Critical Slope 0.00311 ft/ft Velocity 10.54 ft/s Velocity Head 1.73 ft Specific Energy 2.23 ft Froude Number 3.96 - Froude Number 3.96 - Flow Type Supercritical - Ownstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft Profile Description - - Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 0.00 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 0.50 ft Critical Depth 0.6500 ft	Top Width	50.0	00 ft	
Critical Stope 0.00311 ft/ft Velocity 10.54 ft/s Velocity Head 1.73 ft Specific Energy 2.23 ft Froude Number 3.96 s Flow Type Supercritical s CVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft CVF Output Data CVF Output Data CV Output Colspan CV Output Colspon	Normal Depth	0.9	50 ft	
Velocity10.54ft/sVelocity Head1.73ftSpecific Energy2.23ftFroude Number3.96sFlow TypeSupercriticalSupercriticalOVF Input DataDownstream Depth0.00Length0.00ftNumber Of Steps0SupercriticalOVF Output DataOUTOVF Output DataOUTOVF Output DataOUTOUTProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft	Critical Depth	0.8	33 ft	
Velocity1.73ftSpecific Energy2.23ftFroude Number3.963.96Flow TypeSupercritical GVF Input Data Downstream Depth0.00ftLength0.00ftNumber Of Steps0 GVF Output Data Upstream Depth0.00ftProfile Description1Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	Critical Slope	0.003	11 ft/ft	
Specific Energy2.23ftFroude Number3.96Flow TypeSupercriticalGVF Input DataDownstream Depth0.00Length0.00Number Of Steps0GVF Output DataUpstream Depth0.00Profile DescriptionftProfile Headloss0.00Profile Headloss0.00Ipstream VelocityInfinityft/sNormal Depth0.50Critical Depth0.650Ipstream Stepe0.6500Ipstream VelocityInfinityIpstream VelocityIpstreamIpstream VelocityIpstreamIpstream VelocityIpstreamIpstream VelocityIpstreamIpstream VelocityIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstreamIpstream	Velocity	10.5	54 ft/s	
Froude Number 3.96 Flow Type Supercritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Channel Stope 0.06500 ft/ft	Velocity Head	1.7	73 ft	
Flow TypeSupercriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth0.50ftCritical Depth0.6500ft	Specific Energy	2.2	23 ft	
GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 d GVF Output Data 0 ft Upstream Depth 0.00 ft Profile Description 1 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 0.50 ft Critical Depth 0.83 ft Channel Slope 0.00500 ft/ft	Froude Number	3.9	96	
Downstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	Flow Type	Supercritical		
Length0.00ftNumber Of Steps00GVF Output DataUpstream Depth0.00ftProfile Description1Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	GVF Input Data			
Number Of Steps0GVF Output Data0.00ftUpstream Depth0.00ftProfile Description0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	Downstream Depth	0.0	DO ft	
GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft Downstream Velocity 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 0.50 ft Critical Depth 0.83 ft Channel Slope 0.06500 ft/ft	Length	0.0	DO ft	
Upstream Depth0.00ftProfile Description0.00ftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	Number Of Steps		0	
Profile DescriptionProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	GVF Output Data			
Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	Upstream Depth	0.0	DO ft	
Downstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	Profile Description			
Upstream VelocityInfinityft/sNormal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	Profile Headloss	0.0	D0 ft	
Normal Depth0.50ftCritical Depth0.83ftChannel Slope0.06500ft/ft	Downstream Velocity	Infin	ity ft/s	
Critical Depth 0.83 ft Channel Slope 0.06500 ft/ft	Upstream Velocity	Infin	ity ft/s	
Channel Slope 0.06500 ft/ft	Normal Depth	0.9	50 ft	
	Critical Depth	0.8	33 ft	
Critical Slope 0.00311 ft/ft	Channel Slope	0.0650	DO ft/ft	
	Critical Slope	0.003	11 ft/ft	

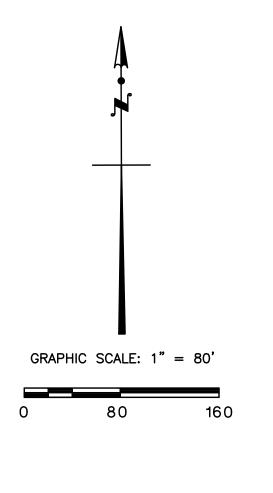
Cross Section for Capacity - Division St.


Project Description		
Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope	0.06500	ft/ft
Normal Depth	0.50	ft
Discharge	116.19	ft³/s

Cross Section Image

ATTACHMENT C MAPS AND STORM DRAIN AS BUILTS

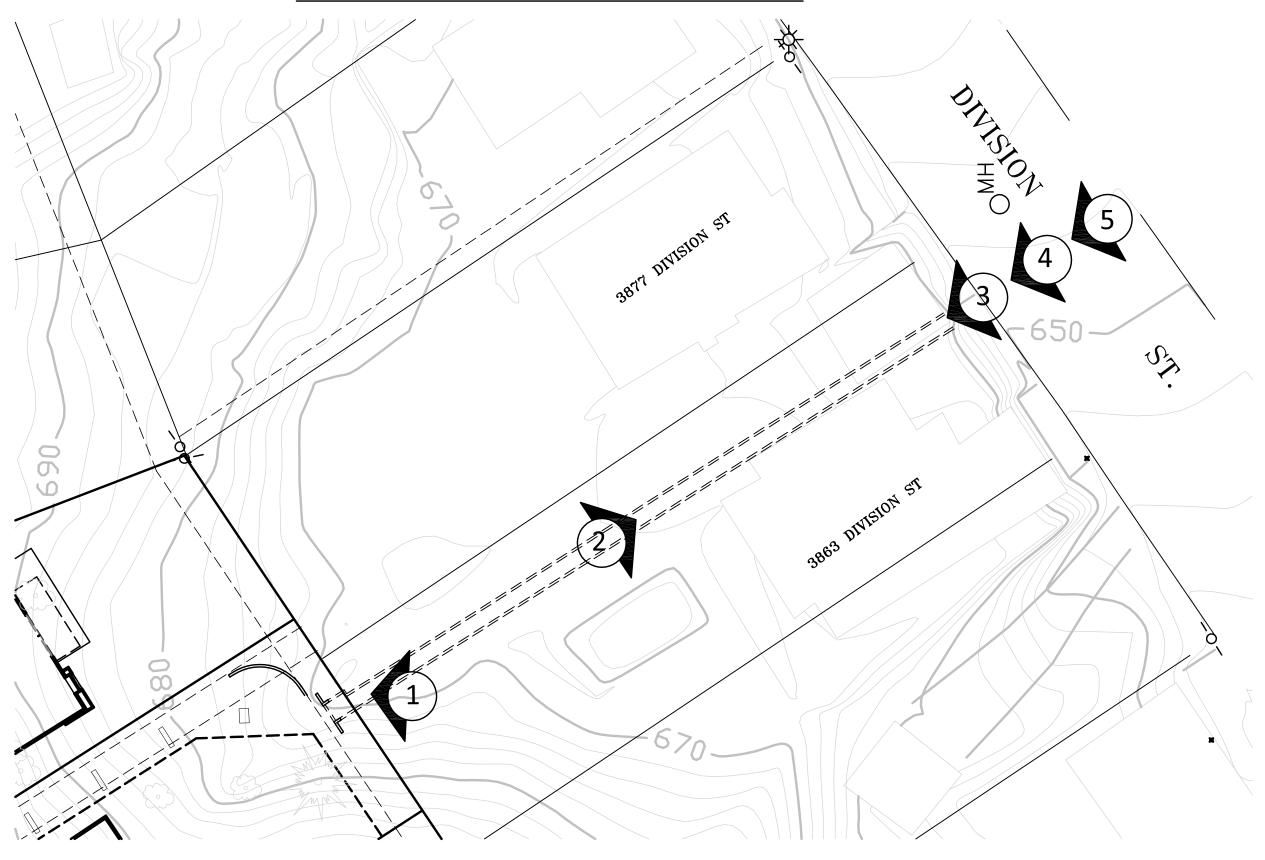
HYDROLOGY MAPS



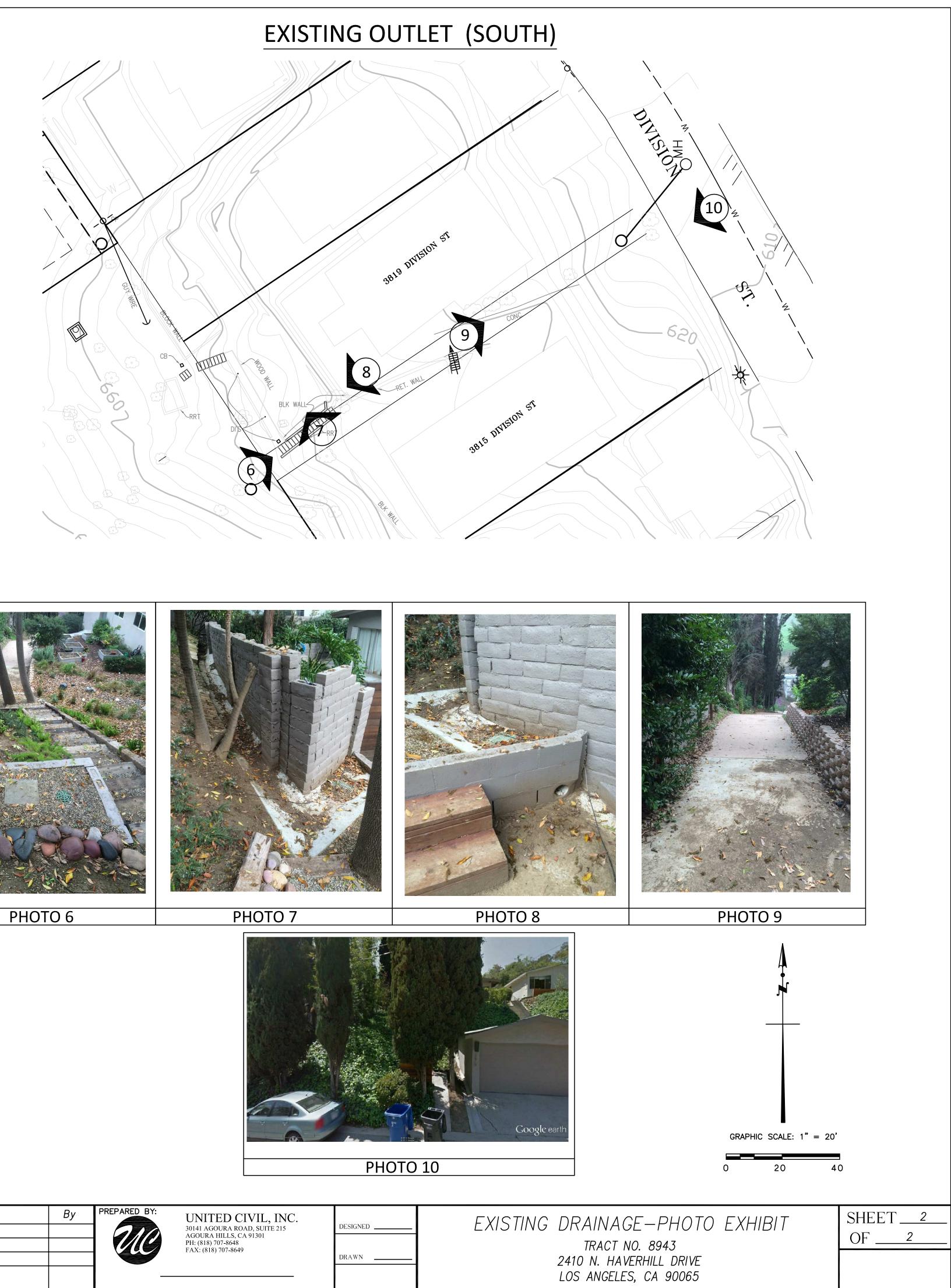
SUBAREA BOUNDARY PROPOSED DIRECTION OF FLOW EXISTING DIRECTION OF FLOW

Date	Revision	Ву	PREPARED BY: UNITED CIVIL, INC.	DECICNI
			30141 AGOURA ROAD, SUITE 215 AGOURA HILLS, CA 91301 PH: (818) 707-8648	DESIGNI
			FAX: (818) 707-8649	DRAWN

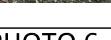
10, 25, 50-YR STORM TABLE SUMMARY

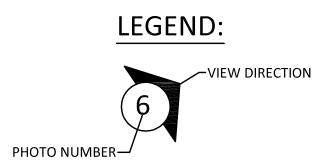

LOCATION	AREA	IMPERVIOUS	PERVIOUS	Q ₁₀	Q 25	Q 50
A	2.31 ac	29%	71%	5.73 cfs	7.16 cfs	8.23 cfs
В	3.39 ac	18%	82%	7.62 cfs	10.50 cfs	12.08 cfs
C	10.45 ac	10%	90%	16.25 cfs	22.57 cfs	27.62 cfs
D	2.60 ac	6.21%	93.79%	6.41 cfs	8.05 cfs	9.28 cfs
E	0.73 ac	100%	0%	1.22 cfs	1.64 cfs	1.96 cfs
F	1.39 ac	9.58%	90.42%	3.43 cfs	4.30 cfs	4.96 cfs
G (Off-site)	9.21 ac	5%	95%	14.26 cfs	19.85 cfs	24.32 cfs

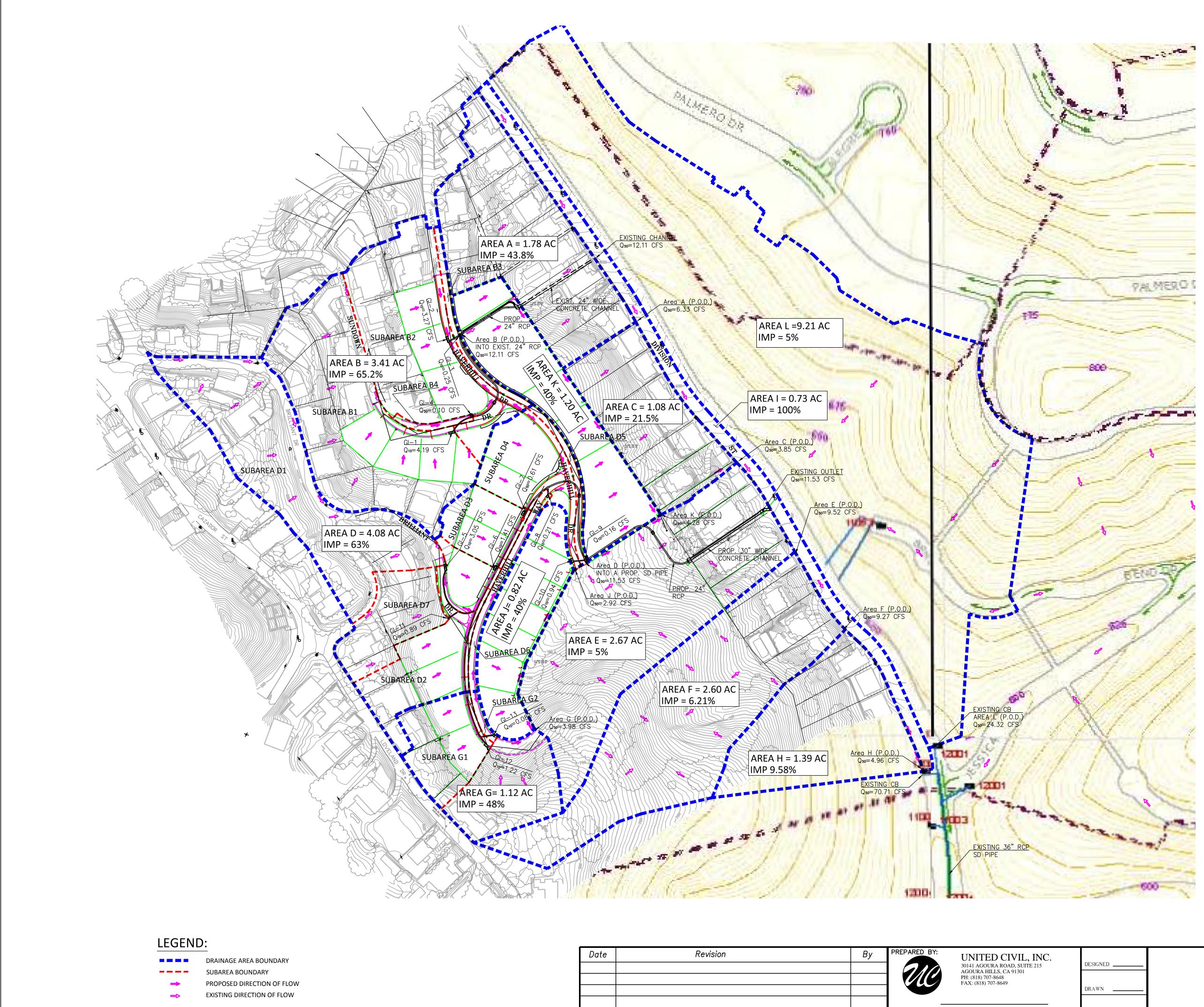
EXISTING HYDROLOGY MAP
TRACT NO. 8943
2410 N. HAVERHILL DRIVE
LOS ANGELES, CA 90065


SHEET	1
OF	2

EXISTING OUTLET (NORTH)

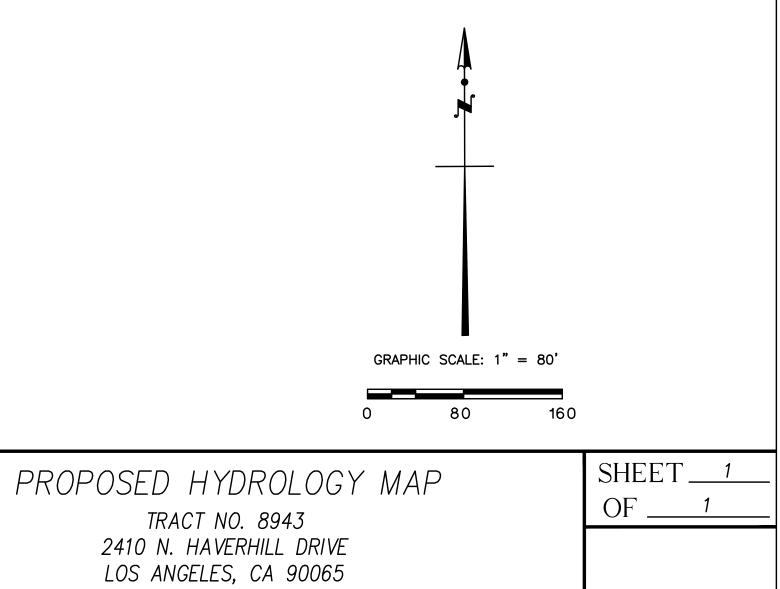






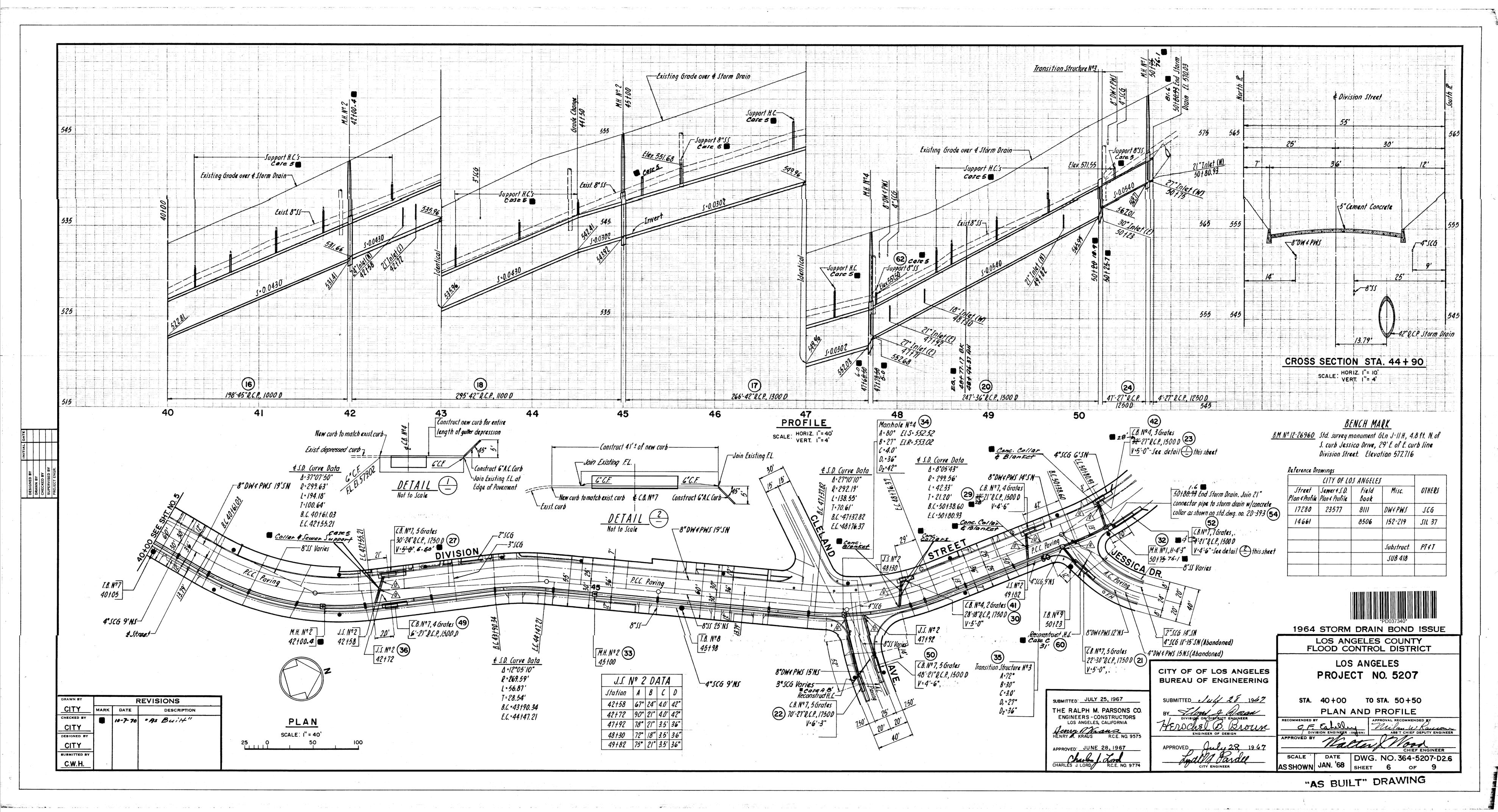
^{01/29/2015}

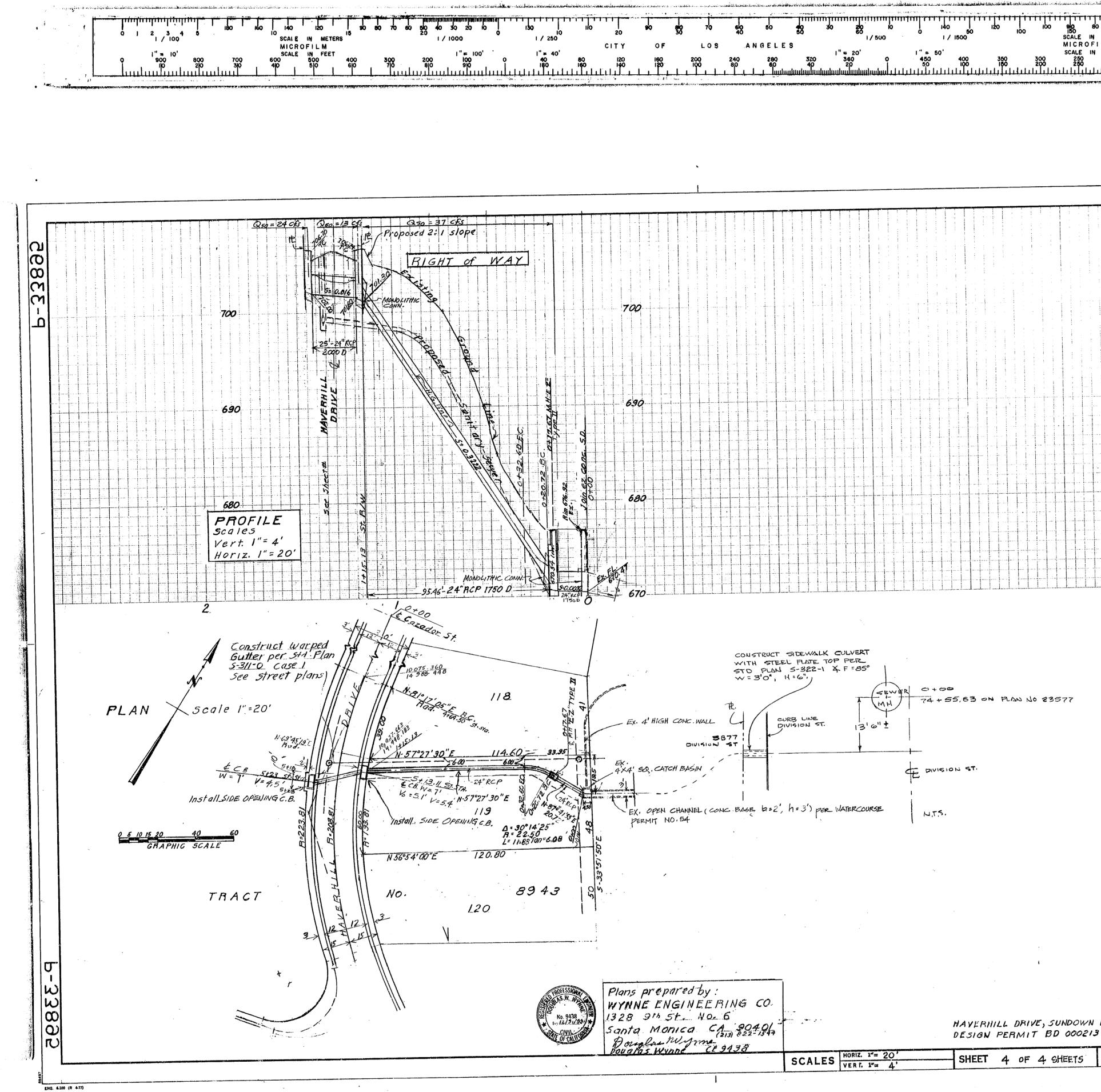
Date	Revision	Ву	PREPARED BY: UNITED CIVIL, INC.	DESIGN
			30141 AGOURA ROAD, SUITE 215 AGOURA HILLS, CA 91301 PH: (818) 707-8648 FAX: (818) 707-8649	DESIGN
				DRAWN


LOCATION	AREA	IMPERVIOUS	PERVIOUS	Q 10	Q ₂₅	Q ₅₀
Α	1.78 ac	43.8%	56.2%	4.43 cfs	5.52 cfs	6.33 cfs
В	3.41 ac	65.2%	34.8%	7.81 cfs	10.59 cfs	12.11 cfs
С	1.08 ac	21.5%	78.5%	2.67 cfs	3.35 cfs	3.85 cfs
D	4.08 ac	63%	37%	7.27 cfs	9.50 cfs	11.53 cfs
E	2.67 ac	5%	95%	6.58 cfs	8.26 cfs	9.53 cfs
F	2.60 ac	6.21%	93.79%	6.41 cfs	8.05 cfs	9.28 cfs
G	1.12 ac	48%	52%	2.79 cfs	3.47 cfs	3.98 cfs
Н	1.39 ac	9.58%	90.42%	3.43 cfs	4.30 cfs	3.43 cfs
I	0.73 ac	100%	0%	1.22 cfs	1.64 cfs	1.96 cfs
J	0.82 ac	40%	60%	2.04 cfs	2.54 cfs	2.92 cfs
K	1.20 ac	2%	98%	2.95 cfs	3.71 cfs	4.28 cfs
L (Off-site)	9.21 ac	5%	95%	14.26 cfs	19.85 cfs	24.32 cfs

PROPOSED GRATE INLET (GI) TABLE SUMMARY

	TRIBUTARY		Q 10	QTOTAL	GI CAPACITY	QDOWN
LOCATION	SUBAREA	AREA	cfs	cfs	cfs	cfs
GI-1	B1	1.83	4.19	4.19	5.75	0
GI-2	B2	1.43	3.27	3.27	3.27	0
GI-3	B3	0.11	0.25	0.25	0.25	0
GI-4	B4	0.04	0.10	0.10	3.90	0
GI-5	D1	1.71	3.05	3.05	3.30	0
GI-6	D2	0.79	1.41	1.41	2.15	0
GI-7	D3	0.34	0.61	0.61	1.70	0
GI-8	D6	0.12	0.21	0.21	0.50	0
GI-9	D5	0.09	0.16	0.16	0.70	0
GI-10	D4	0.53	0.94	0.94	0.94	0
GI-11	D7	0.50	0.89	0.89	0.90	0
GI-12	G1	0.49	1.22	1.22	1.50	0
GI-13	G2	0.03	0.08	0.08	0.08	0


Q_{DOWN} = BYPASS FLOWRATE TO THE DOWNSTREAM GRATE INLET


TRACT NO. 8943

01/29/2015

STORM DRAIN AS BUILTS

٠

经税 计中的运行 计中

١

74

I certify that this tage is a true and correct copy of a record of the City of Los Angeles filmed and processed to archival standards under my direction and centrol [In] secondance with Section 12.4 LAC and Section 34090.5 of the California Covernment, Code. 3-249-92] Hitsoitilla Unit Supervisor. Alreet of Engineering

16.

20

P. tra

.

16

M

20

$ \begin{array}{c} \text{E} & \text{I} \\ \text{BO} & \text{IO} \\ \text{BO} & \text{IO} \\ \text{CROFILM} \\ \text{IN METERS} \\ \text{LE IN METERS} \\ \text{IV FEET} \\ \text{LE IN FEET} \\ \text{IV FEET} \\ IV F$		
	•	
	R.E. NO. 21475 11-29-90 R.E. NO. 21475 11-29-90 R.E. NO. C 20164 11-29-90	
	ENG. ENG. LEE Freeh Bory	
	DESIGNED PVT DRAWN PVT CHECKED A SUPERVISED K/W ASST. DIV./DIST.ENGR.	
	DIV./DIST. ENGR. DATE	
	REVISION DESCRIPTION	
	CINEER NO.	
	OF LOS ANGELE HORI CITYEL MULTING	
OWN DRIVE TO HAVERHILL WAY DO213 CONST. PERMIT BC -	CITY ROBERT 5.	