1. **INTRODUCTION**

This section presents an overview of the existing traffic and circulation system in and surrounding the project site. This section also discusses the potential impacts to traffic and circulation as a result of the implementation of the proposed project. This section summarizes the findings of the Traffic Impact Evaluation for a Single Family Home Development Located Northwest of Andora Avenue and Plummer Street in the City of Los Angeles, as prepared by Overland Traffic Consultants, Inc., in August 2009. A complete copy of the traffic analysis and approval letter from the City of Los Angeles Department of Transportation (LADOT) is included in Appendix IV.J of this Subsequent Environmental Impact Report (EIR).

2. **METHODOLOGY**

This section summarizes the findings of the Traffic Impact Evaluation for a Single Family Home Development Located Northwest of Andora Avenue and Plummer Street in the City of Los Angeles, as prepared by Overland Traffic Consultants, Inc., in August 2009. Overland Traffic Consultants, Inc. was retained to assess the potential impacts of the project on the surrounding roadway system. The analysis in the Traffic Analysis was prepared in accordance with the assumptions, methodology, and procedures approved by LADOT. The scope of the Traffic Impact Evaluation was defined through consultation with LADOT and the methodology of traffic impact analysis contained in the Evaluation is consistent with the City of Los Angeles traffic impact guidelines. The amount of new traffic added to an intersection by the proposed project determines the significance of the project traffic impact. Three key intersections have been selected under consultation with LADOT for this traffic impact analysis.

1. Valley Circle Boulevard and Devonshire Street
2. Valley Circle Boulevard/Andora Avenue/Baden Avenue and Lassen Street
3. Baden Avenue and Plummer Street

The analysis of traffic flow has been conducted for present conditions and for future conditions with added traffic growth. The future analysis documents traffic conditions with the proposed project and other potential land development projects in the study area. Pursuant to the City of Los Angeles traffic impact guidelines, the following steps have been taken to develop the future traffic volume estimate:

a. Existing traffic plus ambient growth to 2010 study year (added approximately 4 percent)

b. Traffic in (a) plus other development “related” projects (without project scenario)
c. Traffic in (b) with the proposed project traffic (with project scenario)

d. Traffic in (c) plus the proposed traffic mitigation, if necessary

3. ENVIRONMENTAL SETTING

a. Existing Regional Transportation System

The project is located in the Chatsworth–Porter Ranch Community Plan area, which is located approximately 22 miles northwest of downtown Los Angeles. The land uses surrounding the project site are residential and open land uses. The streets within the study area are under the jurisdiction of the City of Los Angeles. The nearest regional facility serving the site is the Ronald Reagan Freeway (State Highway 118) which is under the jurisdiction of the California Department of Transportation (Caltrans).

Highways and Streets

The Ronald Reagan Freeway (State Route 118) is located approximately 2 miles north of the project site. This east-west freeway provides four mixed-flow lanes and one high-occupancy vehicle (HOV) lane in each direction. Full access to the freeway is provided from De Soto Avenue. Average daily traffic volume on the 118 Freeway east of De Soto Avenue is approximately 158,000 vehicles per day (ADT). Current non-directional peak hour traffic volume on the 118 Freeway is approximately 14,800 VPH per Caltrans at the same location. Freeway capacities are typically 2,000 vehicles per hour (VPH) per lane under free flow conditions and 1,600 VPH in car pool lanes. Using this capacity value, the 118 Freeway provides a theoretical free flow capacity of approximately 19,200 VPH.

Devonshire Street is an east-west Class II Major Highway providing two lanes in the each direction. Devonshire provides one lane in each direction at the intersection of Valley Circle Boulevard. It has a channelized center divider and bike lanes east of Topanga Canyon Boulevard, which is east of the project area. Left turn channelization is provided for most cross streets. The standard width for a Class II Major Highway is 104 feet of right-of-way consisting of an 80-foot-wide street with 12-foot sidewalks on each side. The full street width is not provided in the immediate vicinity of the project.

Lassen Street is an east-west Collector street providing one lane in each direction in the project vicinity. Lassen Street terminates at the intersection of Lassen Street/Andora Avenue/Valley Circle Boulevard with a four way stop. The roadway becomes a Secondary Highway east of Topanga Canyon Boulevard.

Plummer Street is an east-west Secondary Highway east of Valley Circle Boulevard and a local street west of Valley Circle Boulevard. The roadway provides one lane in each direction in the project vicinity.
Andora Avenue is a north-south roadway that changes to Valley Circle Boulevard, which is a Collector street north of Lassen Street to Andora Avenue, which is a local street south of Lassen Street. Andora Avenue provides one lane for the north and south direction and it will provide access to the project roadways. Currently Andora Avenue traffic is controlled by stop signs at Lassen Street.

Baden Avenue is a north-south Collector Street in the project vicinity. Baden Avenue provides one lane each for the north and south direction. The roadway spans from Lassen Street to Plummer Street in the project vicinity.

Public Transit Service

Public transportation in the study area is provided by the Metropolitan Transportation Authority (Metro). The routes closest to this project are Route 245, Route 166, and Route 364. These routes follow along Topanga Canyon Boulevard and Devonshire Street. They provide access to the Warner Center area; Northridge fashion district; and California State University, Northridge. These bus routes also provide access to the Chatsworth Metrolink station. Bus line 245 provides access to the Metro Orange Line.

b. Existing Traffic Volumes and Levels of Service

An analysis of current traffic conditions was conducted on the streets serving the project area. Detailed traffic analyses of existing conditions were performed at the three study intersections listed below.

1. Valley Circle Boulevard and Devonshire Street
2. Valley Circle Boulevard/Andora Avenue/Baden Avenue and Lassen Street
3. Baden Avenue and Plummer Street

The traffic conditions analysis was conducted using the Critical Movement Analysis (CMA) method. All signalized study intersections were evaluated using this methodology pursuant to the criteria established by LADOT. The peak hour traffic counts were used along with current intersection geometrics and traffic controls to determine the intersection’s operating condition. The CMA procedure uses a ratio of the traffic volume to the intersection capacity to define the proportion of an hour necessary to accommodate all the traffic moving through the intersection.

The CMA procedure adds the highest combination of conflicting traffic volume (V) at an intersection and divides the sum by the intersection capacity (C) for a V/C ratio. Intersection capacity represents the maximum volume of vehicles that has a reasonable expectation of passing through an intersection in 1 hour under typical traffic flow conditions. V/C ratios provide an ideal means for quantifying
intersection operating characteristics for planning purposes. For example, if an intersection has a V/C value of 0.70, the intersection is operating at 70 percent capacity with 30 percent unused capacity.

Once the volume-to-capacity ratio has been calculated, operating characteristics are assigned a level of service grade (A through F) to estimate the level of congestion and stability of the traffic flow. The term "Level of Service" (LOS) definitions used by traffic engineers are provided in Table IV.J-1, below. Existing peak hour traffic volume at each study intersection is illustrated in Figure IV.J-1, Existing Traffic Volumes – AM Peak Hour, for the morning rush hour and Figure IV.J-2, Existing Traffic Volumes – PM Peak Hour, for the evening rush hour.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description of Operating Characteristics</th>
<th>Range of CMA Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Uncongested operations; all vehicles clear in a single cycle.</td>
<td><0.60</td>
</tr>
<tr>
<td>B</td>
<td>Same as above.</td>
<td>>0.60<0.70</td>
</tr>
<tr>
<td>C</td>
<td>Light congestion; occasional backups on critical approaches.</td>
<td>>0.70<0.80</td>
</tr>
<tr>
<td>D</td>
<td>Congestion on critical approaches, but intersection functional. Vehi-</td>
<td>>0.80<0.90</td>
</tr>
<tr>
<td></td>
<td>cles required to wait through more than one cycle during short peaks. No long-standing lines formed.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Severe congestion with some long-standing lines on critical approaches. Blockage of intersection may</td>
<td>>0.90<1.00</td>
</tr>
<tr>
<td></td>
<td>occur if traffic signal does not provide for protected turning movements.</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Forced flow with stoppages of long duration.</td>
<td>>1.00</td>
</tr>
</tbody>
</table>

By applying these procedures to the intersection data, the CMA values and the corresponding Levels of Service for existing traffic conditions were determined for each intersection. The LOS values are summarized in Table IV.J-2, below.
FIGURE IV.J-2

Existing Traffic Volumes - PM Peak Hour

SOURCE: Overland Traffic Consultants, Inc. - January 2010
IV.J Transportation

Table IV.J-2
Critical Movement Analysis Summary
Existing 2008 Conditions

<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Valley Circle Boulevard and Devonshire Street</td>
<td>0.343</td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>Valley Circle Boulevard/Andora Avenue/Baden Avenue and Devonshire Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Lassen Street</td>
<td>0.148</td>
<td>0.156</td>
</tr>
<tr>
<td>3.</td>
<td>Baden Avenue and Plummer Street</td>
<td>0.574</td>
<td>0.559</td>
</tr>
</tbody>
</table>

Table IV.J-2 shows that the three study intersections are operating at acceptable levels of service (i.e., LOS D or better). All study intersections are currently operating at LOS A during the AM and/or PM peak hours.

4. REGULATORY FRAMEWORK

a. Los Angeles County Congestion Management Program

The Congestion Management Program (CMP) was created statewide as a result of Proposition 111 and has been implemented locally by the Los Angeles County Metropolitan Transportation Authority (LACMTA). The CMP for Los Angeles County requires that the traffic impact of individual development projects of potential regional significance be analyzed. A specific system of arterial roadways plus all freeways comprise the CMP system. A total of 164 intersections are identified for monitoring on the system in Los Angeles County. The closest CMP intersection to this project is Devonshire Street and Topanga Canyon Boulevard.

The following must be included in a traffic impact analysis, at minimum: all CMP-monitoring locations, including monitored freeway on- or off-ramp intersections, where the proposed project would add 50 or more trips during either the AM or PM weekday peak hours; all arterial segments where the proposed project would add 50 or more peak-hour trips, if CMP arterial segments are being analyzed rather than intersections; mainline freeway locations where the proposed project would add 150 or more trips, in either direction, during either the AM or PM weekday peak hours; and any other locations that California Department of Transportation (Caltrans) determines relevant and necessary.1

b. Los Angeles Department of Transportation

LADOT is responsible for transportation issues within the City of Los Angeles boundaries. LADOT reviews the transportation/traffic studies prepared for all types for which the City is the lead agency, in addition to other public agency projects located within, or that may affect, the City. LADOT internal procedures are described in their Traffic Study Policies and Procedures Manual (August 2003).

5. ENVIRONMENTAL IMPACT ANALYSIS

a. Significance Criteria

Thresholds

The 2006 L.A. CEQA Thresholds Guide indicates that the determination of a project’s significance to traffic shall be made on a case-by-case basis, considering the following factors:

Volume-to-Capacity Ratio

- The proposed project would have a significant impact on intersection capacity if project traffic causes an increase in the volume-to-capacity (V/C) ratio on the intersection operating condition after the addition of project traffic of on of the following:
 - V/C ratio increase >0.040 if final LOS\(^2\) is C
 - V/C ratio increase >0.020 if final LOS is D
 - V/C ratio increase >0.010 if final LOS is E or F

- The proposed project would have a significant impact on street segment capacity if project traffic causes an increase in the V/C ratio on the street segment operating condition after the addition of project traffic equal to or greater than the following:
 - V/C ratio increase >0.080 if final LOS is C
 - V/C ratio increase >0.040 if final LOS is D
 - V/C ratio increase >0.020 if final LOS is E or F

Level of Service

- The proposed project would have a significant freeway capacity impact if project traffic causes an increase in the demand-to-capacity (D/C) ratio on a freeway segment or freeway on- or off-ramp

\(^2\) “Final LOS” is defined as projected future conditions including project, ambient, and related project growth but without project traffic mitigation.
of 2 percent or more capacity (D/C increase>0.02), which causes or worsens LOS F conditions (D/C >1.00).

- The proposed project would have a significant project access impact if the intersection(s) nearest the primary site access is/are projected to operate at LOS E or F during the AM or PM peak hour, under cumulative plus project conditions.

- The classification of the street (major arterial, state highway) affected.

- The existing traffic levels and level of service (LOS) on the affected street segments and intersections.

- Whether the affected street directly leads to a freeway on- or off-ramp or other state highway.

Design Feature Hazards

- The physical conditions of the site and surrounding area, such as curves, slopes, walls, landscaping or other barriers, that could result in vehicle/pedestrian, vehicle/bicycle or vehicle/vehicle impacts.

Emergency Access

- The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street.

Parking

- The proposed project would have a significant impact on parking if the project provides less parking than needed as determined through an analysis of demand from the project.

- The current utilization of existing on-street parking.

Alternative Transportation

- The amount of pedestrian activity at project access points.

- Design features/physical configurations that affect the visibility of pedestrians and bicyclists to drivers entering and exiting the site, and the visibility of cars to pedestrians and bicyclists.

- The type of bicycle facility the project driveways cross and the level of utilization.

- The projected number of additional transit passengers expected with implementation of the proposed project and available transit capacity.

- The availability of alternative parking locations or public transit options (e.g., bus, train) within 0.25 mile of the project site.
Project Impacts

Impacts related to transportation are considered significant if the project would:

TRAF-1 Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to ratio capacity on roads, or congestion at intersections).

Construction

Construction of the proposed project would involve grading activities at the project site. All earth material would remain on the project site, as no dirt would be imported or exported as a result of project construction or operation. Upon completion of site grading, project infrastructure would be installed followed by construction of the 45 single-family residences. Access to the site during all construction activity would be provided by Andora Avenue. It is anticipated that construction workers would arrive and depart the site during off-peak hours and that construction-related traffic would be largely freeway oriented. Construction workers would arrive and depart along the Ronald Reagan Freeway, Topanga Canyon Boulevard, Lassen Street and Andora Avenue. The most commonly used freeway ramp would be nearest the project site, which is the westbound and eastbound on- and off-ramps at Topanga Canyon Boulevard.

As per the provisions of the Los Angeles Municipal Code, construction may commence at 7:00 AM. As such, the majority of the construction workers are expected to arrive and depart the project site during off-peak hours (i.e., arrive prior to 7:00 AM and depart between 3:00 and 4:00 PM), thereby avoiding generating trips during the 7:00 to 9:00 AM and 4:00 to 6:00 PM peak traffic periods. Consequently, their impact on peak hour traffic in the vicinity of the site would be negligible. Given the off-peak nature of construction worker traffic, construction worker traffic would not substantially affect the volume to capacity ratios of the surrounding intersections or street segments. As such, worker trips would have a less than significant impact.

Operation

Future Conditions Without and With Project

Traffic conditions in the study area were forecast for future analysis year 2010. The "Without Project" traffic volumes, shown in Figures IV.J-6 and IV.J-7 for future year 2010 conditions, not only provide the baseline against which the determination of the effects of incremental project traffic in the project vicinity is made, but also provide a gauge of the impact of ambient traffic growth and cumulative development in
the study area. This allows for a more comprehensive evaluation of the potential project impact mitigation requirements by also considering the need for cumulative infrastructure improvements.

Future 2010 traffic volumes with the addition of project traffic were also determined by adding the project traffic to the future "Without Project" traffic volumes. The traffic growth as a result of the project is used to determine the potential traffic impact in the surrounding area.

Project Traffic

The following contains information describing the vehicular trip generating characteristics of the Hidden Creek residential development. It also presents the methodology used to estimate the trip generation, distribution, and assignment of the traffic generated by the project.

Traffic Generation

Traffic generating characteristics of a wide variety of uses, including the land use of the proposed residential project, have been surveyed and documented by the Institute of Transportation Engineers. Applying the trip generation rates shown in Table IV.J-3, **Project Traffic Generation**, the traffic expected to be generated by the project was calculated, and is summarized. As shown, the project is expected to generate approximately 431 net new trips per day, with about 34 trips occurring during the morning peak hour, and 46 trips occurring during the evening peak hour.

| Table IV.J-3 Project Traffic Generation |
|---|----------------------------------|------|------|
| | AM Peak Hour | PM Peak Hour |
| | Daily In | Out | Total | In | Out | Total |
| **ITE Rates** | Daily | | | | | |
| Trip Rates – Single Family Homes | 9.57 | 0.19 | 0.56 | 0.75| 0.64| 0.37 |
| **Project Size/Use** | | | | | | |
| 45 Single-Family Dwelling Units | 431 | 9 | 25 | 34 | 29 | 17 |

Trip Distribution

Determination of the geographic distribution of generated trips was the next step in the analysis process. A primary factor affecting trip direction is the relative distribution of other commercial and employment centers to and from which prospective residents of the project would be drawn. In addition, characteristics of existing and proposed roadways within the study area were also analyzed. Data from the current Los Angeles County Congestion Management Plan (CMP) were analyzed in order to estimate regional traffic distribution. Lastly, actual vehicle turning movements in and around the project vicinity were observed, and general geographic trip distribution characteristics were developed. Figure IV.J-3, Project Distribution, illustrates the estimated area wide project traffic distribution percentages. Figure IV.J-4, Project Traffic Assignment Percentages, shows the project traffic distribution percentages at each of the study intersections.

Traffic Assignment

Traffic to and from the project site has been assigned to the most direct and reasonable routes considering the adjacent on-street parking and surrounding street system. Using the traffic assignment and the estimated peak hour traffic volume as provided in Table IV.J-3, peak hour traffic volumes at each study location have been calculated and are shown in Figure IV.J-5, for the morning and afternoon peak hours. This estimated assignment of the project traffic flow provides the information necessary to analyze the potential traffic impacts generated by the project at the study locations.

Figures IV.J-6 and IV.J-7, Future (2010) Traffic Volumes Without Project, shows future 2010 "Without Project" traffic volumes at the 3 study intersections, and Figures IV.J-8 and IV.J-9, Future (2010) Traffic Volumes With Project, shows future 2010 "With Project" traffic volumes. Using the traffic volumes from these figures, and CMA and LOS values for the future "Without Project" and “With Project” conditions were calculated for the 3 study intersections based on the same methodology discussed above. All of the study intersections are expected to operate at LOS D or better in the future “Without Project” condition. The study intersections are expected to operate at the same levels of service with the addition of project traffic, except at Baden Avenue and Plummer Street during the AM and PM peak hours where it will operate at LOS A without the project and at LOS D with the project. The change in traffic conditions associated with the project traffic would not significantly impact the traffic flow at any of the study intersections, and impacts would be less than significant.

Project Traffic Assignment Percentages

Valley Circle Blvd & Devonshire Street

Valley Circle Blvd-Baden Ave & Lassen St-Andora Pl

Baden Avenue & Plummer Street

Legend:
XX Inbound
(XX) Outbound

NOT TO SCALE

Source: Overland Traffic Consultants, Inc. - January 2010

Figure IV.J-4

FIGURE IV.J-6

SOURCE: Overland Traffic Consultants, Inc. - January 2010

NOT TO SCALE

Project Site

Source: Overland Traffic Consultants, Inc. - January 2010

Figure IV.J-7

FIGURE IV.J-8

SOURCE: Overland Traffic Consultants, Inc. - January 2010

NOT TO SCALE
Impacts related to transportation are considered significant if the project would:

TRAF-2
Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways.

To address the increasing public concern that traffic congestion was impacting the quality of life and economic vitality of the State of California, the CMP was enacted by Proposition 111. The intent of the CMP is to provide the analytical basis for transportation decisions through the State Transportation Improvement Program (STIP) process. A Countywide approach has been established by the Metropolitan Transportation Authority, the local CMP agency, to implement the statutory requirements of the CMP. The Countywide approach includes designating a highway network that includes all state highways and principal arterials with the County and monitoring the network’s Level of Service standards. This monitoring of the CMP network is one of the responsibilities of local jurisdictions. If Level of Service standards deteriorate, then local jurisdictions must prepare a deficiency plan to be in conformance with the Countywide plan.

Thus, the potential impacts of project traffic on the regional freeway system were also examined. According to the CMP, a traffic analysis is required at all arterial monitoring intersections where the proposed project will add 50 or more trips during either the AM or PM weekday peak hours. The closest CMP intersection to the project site is Devonshire Street and Topanga Canyon Boulevard. The proposed project is not expected to add 50 or more trips to this intersection during either the AM or PM weekday peak hours. In addition, a traffic analysis is also required at all mainline freeway monitoring locations where the project will add 150 or more trips, in either direction, during either the AM or PM weekday peak hours. The estimated traffic volume generated by the project does not exceed the CMP traffic limits. Therefore, no additional CMP analysis is necessary and no significant regional impacts on mainline freeway locations would occur with implementation of MM-TRAF-1.

Impacts related to transportation are considered significant if the project would:

TRAF-3
Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks.

Implementation of the proposed project would not affect or result in a change in air traffic patterns. The proposed project would include low-density residential components located outside an airport land use plan area and would not interfere with overhead flights or require the need to alter air traffic patterns. Therefore, impacts would be less than significant.

Impacts related to transportation are considered significant if the project would:

TRAF-4 Substantially increase hazards to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

Access to the project area will be from internal roadways created by the project with connection to Andora Avenue’s current terminus into the eastern portion of the project site. The necessary roadway extensions would be constructed to comply with the standards followed by the City of Los Angeles Department of Public Works, Bureau of Engineering as required by MM-TRAF-2. Therefore, extension of this roadway would not result in design features that could be hazardous to drivers, pedestrians and other individuals using or recreating in the vicinity of the proposed project. Impacts would be less than significant with implementation of MM-TRAF-2.

Impacts related to transportation are considered significant if the project would:

TRAF-5 Result in inadequate emergency access.

Construction of the proposed project would introduce residential uses in a primarily undeveloped and natural area. The project would include a 20-feet-wide emergency access along the northern property line from Andora Avenue to the western end of the proposed Rodgers Way, allowing for emergency vehicles to safely access the project site. Impacts would be less than significant.

Impacts related to transportation are considered significant if the project would:

TRAF-6 Result in inadequate parking capacity.

The single family homes will provide a minimum of two parking spaces per home as required by City of Los Angeles code. As such, the provision of these parking spaces is anticipated to meet the demands of both residents and guests. Therefore, no significant impacts associated with inadequate parking are anticipated.

Impacts related to transportation are considered significant if the project would:

TRAF-7 Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks).

Public transportation in the study area is provided by the Metropolitan Transportation Authority (Metro). The routes closest to this project are route 245, route 166, and route 364. These routes follow along Topanga Canyon Boulevard and Devonshire Street. They provide access to the Warner Center area, Northridge fashion district and California State University Northridge. These bus routes also provide access to the Chatsworth Metrolink station. Bus line 245 provides access to the Metro Orange Line.
In addition to regional bus transit available in the project vicinity, throughout the community are bicycle lanes located along the streets and bicycle racks are provided in shopping centers and at public parks. Therefore, construction of the proposed project is not anticipated to conflict with adopted polices, plans or programs supporting alternative transportation, and impacts would be less than significant.

b. Mitigation Measures

MM-TRAF-1 The applicant shall contact the Bureau of Engineering (BOE) to determine the exact applicable dedication and widening standards along with any other required improvements specified by the Los Angeles Municipal Code (LAMC) and city ordinances. Required improvements within existing or designated roadways shall be guaranteed through the B-permit process of BOE before the issuance of any building permit for this project, and shall be completed to the satisfaction of LADOT and BOE prior to the issuance of any certificate of occupancy.

MM-TRAF-2 The project shall conform to LADOT’s criteria for driveway designs as published in LADOT Manual of Policies and Procedures, Section 321 (1) and (2), and submit final parking driveway plans to LADOT.

6. CUMULATIVE IMPACTS

The August 2009 Traffic Impact Evaluation for a Single Family Home Development Located Northwest of Andora Avenue and Plummer Street in the City of Los Angeles, discussed herein, analyzed existing (2008) and future (2010) AM and PM peak hour traffic conditions at three intersections in the vicinity of the project site. The cumulative traffic conditions attributable to 12 potential related projects in the surrounding area were also analyzed in this traffic analysis. Based on the analysis, the project is not expected to result in significant impacts to any of the three intersections on its own or in combination with the 11 identified related projects; therefore, cumulative transportation impacts would be less than significant.

a. Mitigation Measures

No cumulative impacts to transportation were identified and, therefore, no mitigation measures are necessary.

b. Adverse Effects

No impacts to transportation would occur with implementation of the proposed project.