IV. ENVIRONMENTAL IMPACT ANALYSIS

F. ENVIRONMENTAL HAZARDS & HAZARDOUS MATERIALS

1. INTRODUCTION

This section evaluates potential impacts related to hazards and hazardous materials associated with development of the Proposed Project. It discusses whether the Proposed Project would create a significant hazard to the public or the environment due to its proximity to hazardous conditions and/or hazardous materials. This analysis is based on the information provided in the Environmental Site Assessment Phase I and Methane Soil Testing, Proposed Office Development Project, Commercial Property, Portion of APN 5508-015-007, 5711 Wilshire Boulevard,1 Los Angeles, CA 90036, by California Environmental Geologists and Engineers, dated January 2013 (Phase I ESA).

The Phase I ESA was conducted in general conformance with the scope and limitations of the American Society for Testing and Materials (ASTM) Standard Practice E1527-052 and the Environmental Protection Agency Standards and Practices for All Appropriate Inquiries (40 CFR Part 312).3 The analysis consisted of: (1) review of historical site use; (2) review of aerial photographs; (3) review of Sanborn Fire Insurance maps; (4) review of City directories; (5) regulatory agency records review; (6) regulatory data base records review; (7) interviews with owner, past owners and others; and (8) site inspection.

The Phase I ESA, including all relevant maps, photos, questionnaires, agency inquiry and response letters and laboratory test reports, is incorporated herein by this reference, are provided in Appendix IV.F to this Draft EIR.

2. ENVIRONMENTAL SETTING

A. Definitions

This Draft EIR uses the definition given in Section 25501(o) of the California Health and Safety Code, which defines a ‘hazardous material’ as:

Any material that, because of its quantity, concentration, or physical or chemical characteristics, poses a significant present or potential hazard to human health and safety or to the environment if released into the workplace or the environment. “Hazardous

1 Note: as previously discussed in Section II., Project Description, per the City of Los Angeles Department of Planning, Zone Information and Map Access System (ZIMAS), the Project Site includes all of the following addresses: 5779 Wilshire Boulevard, 5775 Wilshire Boulevard, 5761 Wilshire Boulevard, 5757 Wilshire Boulevard, 5759 Wilshire Boulevard, 5765 Wilshire Boulevard, 5771 Wilshire Boulevard, 5767 Wilshire Boulevard, 5773 Wilshire Boulevard, 5769 Wilshire Boulevard, and 5711 Wilshire Boulevard. Website: http://zimas.lacity.org/, accessed November 28, 2012.

Materials” include, but are not limited to, hazardous substances, hazardous wastes, and any materials which a handler or the administering agency has a reasonable basis for believing that it would be injurious to the health and safety of persons or harmful to the environment if released into the workplace or environment.

“Hazardous waste” is any hazardous material that is abandoned, discarded or recycled, as defined by Sections 25117 and 25124 of the California Health and Safety Code. In addition, hazardous waste may occasionally be generated by actions that change the composition of previously nonhazardous materials. The criteria used to characterize a material as hazardous include ignitability, toxicity, corrosivity, reactivity, radioactivity or bioactivity.

B. Existing Uses & Project Description

The total Museum Square site is approximately 7-1/2 acres (327,613 square feet); it is fully developed with a commercial office complex, an associated structure parking and a parking surface lot. The Proposed Project Site is the approximately 135,831 square feet (sf) northern portion of the Museum Square development which contains the parking structure and a portion of the surface parking lot (refer to Figure II-3, Parcel Survey Map). The Proposed Project is requesting a lot split to separate an approximately 25,852 sf parcel at the northwestern corner of the Museum Square site which contains a portion of the surface parking lot from the remainder of the Museum Square site (which contains the 11-story commercial development, access lanes and parking structure), to create a separate, financeable parcel under the new building (refer to Figure II-4, Proposed New Parcel Map). Following the lot split, the existing surface parking lot would be demolished, allowing for the construction of a new 13-story, approximately 249,500 sf commercial office building and the addition of two new levels of parking (approximately 162,768 sf) to the existing five-level parking structure. No structures are located on the portion of the Project Site proposed for development of the new office building.

C. Surrounding Uses

The Project Site is located on a heavily trafficked segment of Wilshire Boulevard in the Miracle Mile area of the City west of downtown Los Angeles and Mid-City. The land uses within the general vicinity of the Project Site are characterized by a mix of low- to high-intensity commercial, institutional and residential uses, which vary widely in building style and period of construction. The Project Site is generally bound by commercial development to the south, east, and west. Multi-family residential developments are located to the north and east. Museum and park uses (Hancock Park) are located west of the Project Site, across Curson Avenue.

i) Sensitive Receptors

Land uses that are considered more sensitive to environmental discharges than others are referred to as sensitive receptors. Land uses such as primary and secondary schools, hospitals, and convalescent homes are considered to be sensitive to environmental discharges because the very young, the elderly, and the infirm are more susceptible due to their fragile immune systems and special sensitivity to environmental discharges than the general public. Residential uses are considered sensitive because people in residential areas are often at home for extended periods of time, so they could be exposed to pollutants for extended periods.

Surrounding uses that would be considered sensitive receptors with respect to hazardous material exposure include the multi-family residential uses located to the north and east. The closest schools to the Project Site are Cathedral Chapel School (755 S. Cochran Avenue) located approximately one-half
mile southeast of the Project Site, and Hancock Park Elementary School (408 S. Fairfax Avenue) located approximately one-half mile northwest of the Project Site.

D. Historic Use of the Project Site

i) Summary of Site History

Based on review of historical documentation and regulatory agency records, the Museum Square site was developed with an 11-story commercial office building and an affiliated surface parking lot in 1948 for use by the Prudential Insurance Company. A review of historical City of Los Angeles directories indicate that various other tenants of the office building complex have included administrative/office, medical, banking, concierge, conferencing facility, convenience store, dry cleaning and restaurant uses.

ii) Historical Maps and Aerial Photographs

Sanborn Fire Insurance maps provide historical land use information in some metropolitan areas. Sanborn maps were reviewed for the Museum Square site for the years 1927, 1950, and 1969. Historical aerial photographs were also reviewed for the years 1947, 1956, 1965, 1976, 1989, 1994 and 2005. Historical site utilization research indicates that the portion of Proposed Project Site to be developed with the office building component was undeveloped until a surface parking lot was constructed during the early 1950s. This portion of the Project Site remains utilized as an at-grade parking facility. The southern portion of the Museum Square site was developed with an 11-story office tower for the western headquarters of the Prudential Insurance Company in 1947. The existing five-story parking structure on the Project Site was approved and constructed in 1983.

E. Interviews

An Environmental Field Interview Questionnaire was completed on November 26, 2012 by key site manager Richard Corey. With the exception of the Project’s location in a Methane Zone, no potential environmental concerns were identified based on the interview responses.

F. Project Site Reconnaissance

Site reconnaissance was conducted on November 21, 2012 by an individual meeting the definition of Environmental Professional as defined in Section 312.10 of 40 CFR 312 and who has the specific education, training, and experience necessary to exercise professional judgment to develop opinions and conclusions regarding conditions indicative of releases or threatened releases on, at, in, or to a property, sufficient to meet the objectives and performance factors in §312.20. During the site reconnaissance, the following general observations were made:

- The Project Site consists of a rectangular-shaped parcel of land that encompasses approximately 135,831 square feet. The Project Site is currently developed as an at-grade parking facility and a five-story parking structure.

5 A full statement of qualifications and license numbers are provided in the Phase I ESA, Appendix IV.F of this Draft EIR.
• The area surrounding the Project Site consists of commercial, residential, park and museum and uses.
• The Project Site is nearly level. Drainage from the site is by sheet flow towards the adjacent city streets.
• No evidence of sumps or standing water was observed on the Project Site.
• No evidence of the past use, treatment, storage, disposal or generation of hazardous substances was observed on the Project Site.
• No evidence of hazardous substance use was observed on the Project Site.
• No evidence of existing aboveground or underground storage tanks, clarifiers, sumps, or grease interceptors was observed on the Project Site.
• No evidence of containers of hazardous or unidentified substances was observed on the Project Site.
• No evidence of onsite disposal or landfill of solid waste material was observed on the Project Site.
• No evidence of PCB containing transformers or equipment was observed on the Project Site.
• Heating and cooling equipment was not observed at the time of the site reconnaissance.
• No evidence of wastewater treatment or disposal systems was observed on the Project Site.
• No evidence of dry wells, irrigation wells, injection wells, abandoned wells, monitoring wells or other wells was observed on the Project Site.
• No evidence of strong, pungent or noxious odors was noted on the Project Site.
• No evidence of stressed vegetation was observed on the Project Site.
• No evidence of staining or residue was observed on the Project Site.
• No evidence of pits, ponds, and/or lagoons was observed on the Project Site.
• No other conditions of environmental concern regarding potential sources for soil and groundwater contamination were observed on the Project Site.
• Elevated concentrations of methane were detected in soil-gas beneath the Project Site.
• Natural petroleum hydrocarbons were found in shallow soil beneath the Project Site.

G. Environmental Risks

i) Historic Uses

The review of historical site use identified that the Museum Square site has been used for commercial purposes since 1950. No evidence of the past use, treatment, storage, disposal or generation of hazardous substances was identified in association with the current or historical use of the property.

ii) Asbestos-Containing Materials

Building materials containing asbestos (ACMs) were commonly used in structures between 1945 and 1980. These materials include vinyl flooring and mastic, wallboard and associated joint compound,
plaster, stucco, acoustic ceiling spray, ceiling titles, heating systems components, and roofing materials. Airborne particles of asbestos have been found to be hazardous to human health. The Occupational Safety and Health Administration (OSHA) defines ACMs as those materials that contain more than one percent asbestos.

The Proposed Project Site contains a surface parking lot and a five-story parking structure built in 1983. The structure is built of steel-reinforced concrete with metal railings used throughout the stairwells. Given the date of construction and the type of materials used, no building components containing suspect ACMs would be likely at the Project Site. In 2011, approximately 1.2 tons of ACMs were identified and removed from the neighboring Museum Square Office Tower building and disposed of at a landfill pursuant to local, State and federal regulations.

iii) Lead-Based Paint

Lead-based paint (LBP) is considered a health hazard for people, especially children. From the turn of the century through the 1940’s paint manufacturers used lead as a primary ingredient in many oil-based paints. Use of lead in paint decreased but was still used until 1978, when it was banned from residential use. California law requires that all residential buildings constructed on or before January 1, 1979 or schools constructed on or before January 1993 to be presumed to contain lead-based paint. Structures (residential, commercial, or industrial) are affected by lead based paint regulations if remodeling, renovations, or demolition activities would disturb lead-based paint surfaces.

The Proposed Project Site contains a surface parking lot and a five-story parking structure built in 1983. The structure is built of steel-reinforced concrete with metal railings used throughout the stairwells. Given the date of construction and the type of materials used, no building components containing suspect LBP would be likely at the Project Site.

iv) Polychlorinated Biphenyls

Polychlorinated biphenyls (PCBs) are mixtures of chlorinated compounds, which can exist as vapor, oily liquids, or solids. PCBs have been used as coolants and lubricants in transformers and other electrical equipment because they do not burn easily and are good insulators. When PCBs leak into the air, water, and soil they can result in skin rashes and liver damage in humans. PCBs are also probable human carcinogens. In 1977, the U.S. government banned the production of PCBs.

Older light ballasts associated with fluorescent light fixtures were typically manufactured with fluids containing PCBs. Newer light ballasts (post 1969) were typically manufactured free of PCBs and will generally be labeled “No PCBs.” Based on the construction date of the existing parking structure (approximately 1983), the presence of PCBs is unlikely. No evidence of PCB containing transformers or equipment was observed on the Project Site at the time of the site reconnaissance. Therefore, no PCBs are anticipated to be encountered on site.

v) Underground Storage Tanks (USTs) and Aboveground Storage Tanks (ASTs)

The Museum Square site was formerly listed on the Leaking Underground Storage Tank (LUST) database for a leaking underground storage tank. The Los Angeles Regional Water Quality Control Board (RWQCB) was the lead agency responsible for monitoring and oversight. The RWQCB issued case closure in 1996. No USTs or ASTs are located within the Proposed Project Site.
vi) **Landfills / Solid Waste**

The Major Waste System maps for Los Angeles County, the Solid Waste Information Systems (SWIS), and the Waste Management Unit Database (WMUD) were reviewed to identify landfills and transfer stations located near the Museum Square site. Map no. 114-157 and the EDR database report indicate no landfills or transfer stations located within a 2,000-foot radius of the Project Site. No active hazardous waste landfills are located within Los Angeles County.

Trash bins are located within an enclosure located at the northwest corner of the Project Site. No evidence of spills and/or staining was observed on the pavement beneath the bins. No evidence of onsite disposal or landfill of solid waste material was observed on the Project Site at the time of the site reconnaissance.

vii) **Methane**

Methane (CH₄) is a naturally occurring, odorless, colorless, and extremely flammable gas with a wide distribution in nature. It is the major constituent of natural gas that is used as a fuel, and is an important source of hydrogen and a wide variety of other organic compounds. It is often found in conjunction with petroleum deposits. No long-term health effects are known to occur from exposure to methane. However, at very high concentration, methane can act as an asphyxiate by reducing the relative concentration of oxygen in the air that is inhaled (similar to carbon monoxide). The primary danger posed by methane build-up is the risk of fire or explosion.

The Project Site is adjacent to the east of the world-renowned La Brea Fossil Tar Pits. Numerous mammalian and bird fossils associated with the Pleistocene Epoch were preserved within the natural asphaltum (a black, oily, viscous material that is a naturally-occurring organic byproduct of decomposed organic materials) deposits that reach the ground surface in the area. Natural asphaltum is widespread in the shallow sediment beneath the region.

Methane in the atmosphere has both natural and anthropogenic (i.e., caused by humans) sources. Its atmospheric concentration is less than carbon dioxide (CO₂) and its lifetime in the atmosphere is brief (10-12 years) when compared to other gases. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of methane. Other anthropogenic sources include fossil-fuel combustion and biomass burning. (For further discussion regarding potential impacts on global warming from methane, refer to section IV.E. Greenhouse Gas Emissions of this Draft EIR.)

Methane has the potential to migrate into buildings through physical pathways that include cracks in concrete foundations, unsealed conduits or utility trenches, and other small openings common in building construction. Methane gas can also reach the surface through natural geologic features which may facilitate vertical, lateral or oblique migrations.

Worker exposure to methane is regulated by the federal Occupational Safety and Health Administration (OSHA) under CFR section 1910.146. This section regulates worker exposure to a ‘hazardous atmosphere’ within a confined space where the presence of flammable gas vapor or mist is in excess of 10 percent of the lower explosive limit.

Chapter IX, Article 1, Division 71, Section 91.7103 of the Los Angeles Municipal Code (LAMC), also known as the Los Angeles Methane Seepage Regulations, identifies Methane Hazard Zones and Methane Buffer Zones. The Project Site is located within a Methane Hazard Zone, as designated by Los Angeles
Department of Building and Safety (LADBS).6 Due to the potential environmental risk associated with Methane Hazard Zones, properties within a Methane Hazard Zone require methane testing and mitigation upon (re)development.

In compliance with Division 71, testing for methane gas was undertaken at the Project Site on November 21, 2012. Three nested 5-10 foot deep soil gas probes were placed by H & P Mobile Geochemistry (LADBS Certified Methane Test License #10231) under the direction of California Environmental Geologists & Engineers near the northern, central and southern portions of the surface parking lot on the Project Site. A hydraulic push drill rig was utilized for the placement of the probes to depths of five and ten feet below the ground surface (bgs). Perched, shallow groundwater (5-7 feet bgs) was identified during placement of the probes.

The soil gas probes consisted of a sampling tip attached to inert nylon tubing. Each segment was premeasured to ensure the correct depth. The sample point was set within a one foot sand sensing zone at five and fifteen feet bgs. Dry granular bentonite (a fine grained clay) was placed above the sand sensing zone and hydrated to seal the sensing zone. The probe was completed to the surface with the hydrated bentonite and capped with a gas-tight two-way valve preventing degassing of the vapor point. The soil gas probes were allowed to equilibrate prior to the collection of the soil-gas sample. A three-purge volume was utilized for the soil gas sampling.

Samples of soil gas were tested for the presence of methane and fixed gases (oxygen (O\textsubscript{2}) and CO\textsubscript{2}) using a Landtec GEM 2000 field analyzer. Atmospheric pressure and relative pressure in the probes were measured using a magnehelic pressure gauge. The gas probe pressures were measured at 0.0-inches of water in all locations. The locations of the three soil gas probes (SV1, SV2 and SV3) are shown on Figure IV.F-1. The three probes were sampled on November 21 and 26, 2012.

Methane was recorded at concentrations of 8,000 to 402,000 parts per million by volume (ppmv) in all probes and at all depths of 4.5 to 5 feet. The deep (10 foot) probe showed evidence of moisture intrusion during the initial sampling event (vapor could not be extracted). Perched groundwater was encountered in probe SV3 at a depth of 5.5 feet during the soil sampling activities.

Six soil samples were obtained from depths of 5, 10 and 20 feet from the soil gas probe pilot holes. The soil samples were tested for petroleum hydrocarbons (gasoline through oil range) using gas chromatography flame ionization detector (GC/FID) methods. Petroleum was detected in four of the six soil samples. The concentration of petroleum hydrocarbons ranged from 660 mg/kg in sample SV2 at 10 feet to 45,000 mg/kg in SV1 at 20 feet. The petroleum hydrocarbons are related to the natural asphaltum-oil seepage common to the region. Layers of oil-type hydrocarbons were observed in the sediment samples. The Methane Test Data summary and lab reports (soil-gas and soil) are provided in the Phase I ESA, Appendix VI.

Soil Gas Testing Sites

Legend:
- Location and number of soil gas/soil sample.

WILSHIRE BOULEVARD

Source: California Environmental, January 2013.
Further information regarding methane hazards and testing in the Project vicinity can be found in the EIR/EIS for the Westside Subway Extension (the Purple Line) prepared jointly by the U.S. Department of Transportation - Federal Transit Administration and the Los Angeles County Metropolitan Transportation Authority (Metro). All reports prepared for the purpose of CEQA disclosure, including all technical appendices, are available online at the following link:

http://www.metro.net/projects/westside/westside-reports/

In summary, an elevated concentration of methane gas (8,000 to 402,000 ppmv) was detected beneath the Project Site during the soil-gas testing, a condition associated with a regional oil field and the local natural asphaltum-oil seepage.

viii) Oil Wells

The State of California Division of Oil, Gas and Geothermal Resources (DOGGR) Map No. 118 indicates that the Project Site is located within the boundaries of the Salt Lake Oil Field. Most of the wells within the Salt Lake Oil Field have been abandoned. There are no active or abandoned wells on or nearby the Project Site. The nearest well to the Project Site is the abandoned well, Chevron “Salt Lake 406” located on a property approximately 400 feet to the northeast. Numerous abandoned oil wells are located beneath the Park La Brea development, north of the Project Site in the vicinity of 6th Street.

ix) Radon

According to the U.S. Environmental Protection Agency (EPA), the Project Site, being located in Los Angeles County, is situated within Radon Zone 2, with a predicted average indoor radon screening level between 2 and 4 picocuries per Liter (pCi/L, moderate potential). Based on the January 2005 Radon Potential Zone Map for Southern Los Angeles County, published by the California Department of Health Services (DHS), the Project Site is located in an area of low potential (six percent) for indoor radon levels above the 4.0 pCi/L action level.

H. Regulatory Framework

i) Federal Regulations

A variety of laws and regulations governing the management and control of hazardous substances has been established at the federal level to protect the environment. These regulations fall under the jurisdiction of the United States Environmental Protection Agency (US EPA) and include the following principal laws:

- The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), or “Superfund,” creates national policy and procedures to identify and cleanup sites where hazardous substances have been released into the environment and provides the mechanisms by which these remedial actions are financed. Additionally, the Superfund Amendment and Reauthorization Act (SARA), which extended and amended CERCLA, required that due diligence be exercised in the investigation of past and current handling of hazardous substances prior to property sale.

- The Resource Conservation and Recovery Act (RCRA) was enacted in 1974 as the first step in regulating the potential health and environmental problems associated with solid hazardous and non-hazardous waste disposal.
• The Toxic Substances Control Act (TSCA), enacted in 1976, regulates and controls harmful chemicals and toxic substances in commercial use, in particular PCBs.

• The Federal Insecticide, Fungicide, and Rodenticide Act (as amended) controls the manufacture, use, and disposal of pesticides and herbicides.

• The Hazardous and Solid Waste Act (HSWA) includes the 1984 amendments to RCRA to address gaps in the area of highly toxic wastes.

• Title 29 Code of Federal Regulations (CFR), Park 1910 contains the Occupational Safety and Health Administration (OSHA) requirements for workers at hazardous waste sites including emergency response, hazard communication, and personal protective equipment.

 ii) State Regulations

At the State level, California has developed hazardous waste regulations that are similar to the federal laws, but that are much more stringent in their application. The basic law established in California, similar to RCRA, is the Hazardous Waste Control Law (HWCL). More detailed information concerning the implementation of these requirements is given in Title 22 of California Code of Regulations (CCR), Chapter 230. The HWCL empowers the Department of Toxic Substances Control (DTSC), a division of CAL EPA (formerly part of the Department of Health Services), to administer the State’s hazardous waste program and implement the federal program in California. This law includes UST regulation.

Other relevant State laws include the following:

• Proposition 65 focuses on carcinogenic or teratogenic contaminants and implements the State’s community-right-to-know program.

• UST Law that regulates underground storage to prevent groundwater contamination.

• Porter-Cologne Water Quality Control Act, adopted in 1969, requires the maintenance of the highest reasonable quality of the State’s waters. It authorizes the Regional Water Quality Control Board (RWQCB) to supervise cleanup efforts at spill sites that have affected groundwater.

The DTSC has the primary responsibility for enforcement and implementation of hazardous waste control laws in the State. However, this responsibility is shared with other State and local government agencies, including the State Water Resources Control Board (SWRCB), RWQCB, and City and County governments.

 iii) Local Regulations

At the local level, the Los Angeles Fire Department (LAFD) administers hazardous materials environmental compliance programs within City jurisdiction. These programs include hazardous materials disclosure and business plans, underground storage tank programs, aboveground storage tank spill prevention control and countermeasures, hazardous waste generator programs (administered by Los Angeles County Fire Department), and the California Accidental Release Prevention Program.

In addition, the City of Los Angeles adopted Ordinance No. 175,790 in March of 2004. The Ordinance includes information describing the test protocols, design parameters, and installation procedures for the methane gas mitigation systems; and requires mitigation for methane gas intrusion into buildings located within a Methane Zone or Methane Buffer Zone as established under Sections 91.7101 et seq. of
the Los Angeles Municipal Code. The LADBS is responsible for administering compliance with methane mitigation systems.

\textit{iv) Regulatory Agency Search}

A review of the most current databases and files from federal and state environmental regulatory agencies as well as local entities was conducted to identify use, generation, storage, treatment, or disposal of hazardous materials and chemicals, or release incidents of such materials, which may impact the Project Site.

\textit{v) Federal, State and Historic Lists}

Federal Lists

The following federal environmental databases were reviewed to obtain information pertaining to the Project site and properties within the listed approximate search distance. These databases are maintained by the US EPA.

- US EPA National Priority List (NPL)
- US EPA Comprehensive Environmental Response, Compensation, and Liability Information System Database (CERCLIS)
- Emergency Response Notification System (ERNS)
- Hazardous Materials Information Reporting System (HMIRS)
- Superfund (CERCLA) Consent Decrees (CONSENT)
- Department of Defense Sites (DOD)
- US EPA BROWNFIELDS
- Toxic Chemical Release Inventory System (TRIS)
- FIFRA/TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

State, Local and Historic Lists

The following State, local and historic environmental databases were reviewed to obtain information pertaining to the Project Site and properties within the listed minimum search distance of the Project Site.

- State Registered Underground Storage Tanks (UST);
- State and County Leaking Underground Storage Tanks List (LUST);
- Historic Underground Storage Tank Database (HIST UST)
- Sites with active and inactive USTs (CA FID UST)
- State, Regional and County Solid Waste Landfills, Incinerators, or Transfer Stations List (SWIS)
- Contaminated Water Wells Database (Cortese List)
- California Hazardous Waste Tracking System (Facility Index System Database -FINDS)
- Hazardous Waste Manifests Database (HAZNET)
- Statewide Environmental Evaluation and Planning System (SWEEPS)
- Solid Waste Recycling Facilities list (SWRCY)
- Spills, Leaks, Investigations, and Cleanups Section Database (CA-SLIC)
- Toxic Pits Cleanup Act
- LA County Site Mitigation
- Voluntary Cleanup Program Properties (VCP)
- Dry Cleaner Facilities
- Historical Auto Stations

These Agency database lists were reviewed for known or suspected contaminated sites and for sites that store, generate or use hazardous materials near the Museum Square site. The Museum Square site is listed on the LUST, EMI, CA FID UST, HAZNET and Cortese databases. Primary issues identified were removal of asbestos containing wastes and a leaky underground storage tank. The Museum Square site was reported on EMI (1987) and HAZNET lists (2011). As previously discussed, in 2011, approximately 1.2 tons of asbestos containing wastes were removed from the neighboring Museum Square Office Tower building and disposed of at a landfill. The Museum Square site was also listed on the LUST database for a leaky underground storage tank. The RWQCB was the lead agency responsible for monitoring and oversight. The RWQCB issued case closure in 1996.

Six environmental sites, listed on the LUST, Cortese, LOS ANGELES CO. HMS, SLIC, WIP, SWRCY, RCRA-SQG, FINDS, Historical Cleaners, HAZNET, EMI, UST, CA FID UST, SWEEPS UST, HIST UST, CA WDS and ERNS databases, are located nearby the Project Site. A listed environmental concern site is the George C. Page Museum (La Brea Tar Pits), located approximately 200 feet to the west. Another listed contaminated site near to the Project Site is California Federal Plaza Service Station, located approximately 200 feet to the south. A case was opened by the RWQCB in 1993 for a leaky underground storage tank located there. No specific contaminants of concern were reported. The RWQCB was the lead agency responsible for oversight and issued case closure in 1998. It is considered unlikely that the soil or groundwater beneath the Project Site is impacted by the releases identified on the government environmental databases, as these sites are located cross or down gradient of the Project Site. Selected environmental risk sites found to exist nearby the Project Site are listed in Table IV.F-1. The EDR Radius Map with GeoCheck is provided in the Phase I ESA in Appendix V.
Table IV.F-1

Locally Listed Environmental Sites of Concern near the Proposed Project Site

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Distance from Project Site</th>
<th>Environmental Record Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>George C. Page Museum</td>
<td>5801 Wilshire Blvd</td>
<td>200 feet west</td>
<td>RCRA-SQG, FINDS</td>
</tr>
<tr>
<td>LaSalle Partners Asset Mgmt JH Snyder Company Cal Fed Savings</td>
<td>5750 Wilshire Blvd</td>
<td>200 feet south</td>
<td>UST, SWEEPS UST, CA FID UST, HAZNET</td>
</tr>
<tr>
<td>Beneficial Standard Life Ins Co</td>
<td>5700 Wilshire Blvd</td>
<td>200 feet south</td>
<td>RCRA-SQG, FINDS</td>
</tr>
<tr>
<td>California Federal Plaza Service Station 7152 Pacific Parking Corp Service Station 7152</td>
<td>5670 Wilshire Blvd</td>
<td>200 feet south</td>
<td>HIST UST, RCRA-SQG, FINDS, CA FID UST, SWEEPS UST, HAZNET</td>
</tr>
<tr>
<td>Green Jos</td>
<td>5666 Wilshire Blvd</td>
<td>200 feet south</td>
<td>EDR Historical Cleaners</td>
</tr>
<tr>
<td>Prepress Studio</td>
<td>5657 Wilshire Blvd</td>
<td>200 feet south</td>
<td>RCRA-NonGen, FINDS</td>
</tr>
</tbody>
</table>

Source: California Environmental Geologists and Engineers, January 2013.

vi) Other Agencies

Other environmental record sources were also reviewed from the state Department of Toxic Substances Control (DTSC), the RWQCB, the South Coast Air Quality Management District (SCAQMD), Los Angeles County Health Department (LACHD), the County Sanitation Districts of Los Angeles County (Major Waste System maps for Los Angeles County, the Solid Waste Information Systems (SWIS), and the Waste Management Unit Database (WMUD)) the City of Los Angeles Department of Building and Safety (LADBS), and the LAFD.

Records reviewed and/or response letters received from the DTSC, the RWQCB, the SCAQMD, SWIS, WMUD, the LACHD, and the LADBS indicated that there were no records maintained showing any potential environmental concerns were identified for the Museum Square site address(es).

However, according to a representative of the City of Los Angeles Fire Department (LAFD), while there are no underground storage tank records or industrial waste files maintained for the portion of the Museum Square site to be redeveloped following the lot split (i.e. the Project Site), the LAFD does maintain a file for the property address at 5757 Wilshire Boulevard (the existing Museum Square building complex). The file contains permits for installation of two 5,000-gallon fuel oil USTs in 1948. A 1956 permit indicates the USTs were relocated. In 1995 the two 5,000-gallon USTs were abandoned by removal. The tanks were located in the service dock, north of the 5757 building, between the building and the existing parking structure, approximately 300 feet east of the site for the Proposed Project office building. The file contained the tank closure soil sample data that showed up to 24,000 mg/kg of TPH-diesel was detected in one soil sample obtained from the tank excavation. The LAFD required an assessment be conducted to determine the extent of the release. The following report was prepared at the request of the LAFD: Site Assessment Report, Museum Square, 5757 Wilshire Blvd. LA, CA 90036, Advanced Environmental Concepts, dated February 1996.

The report provides subsurface assessment data (soil and groundwater) obtained in the area of two removed 5,000-gallon diesel USTs. Four borings were drilled to a depth of 15 feet. TPH-diesel was not detected in the eight soil samples analyzed. TPH-oil was found in one sample at a concentration of 240
mg/kg. Volatile organic compounds (VOCs) found in petroleum derivatives such as gasoline, were not detected in the soil samples. TPH-diesel and VOCs were not detected in the groundwater sample. The subsurface testing confirmed that the hydrocarbon release detected during the tank removal was limited to the area immediately adjacent to the tank excavation. The report recommended that final closure for the tank removal work be granted by the LAFD. The LAFD referred the case to the RWQCB. The RWQCB issued final UST case closure for the release on the Project Site on May 21, 1996. The LAFD file data is included in the Phase I ESA as Appendix IV.

Notwithstanding the aforementioned items, in all other cases no violations were reported and/or no deleterious records were found indicating hazardous substances and materials located on or nearby the Project Site.

3. ENVIRONMENTAL IMPACTS

A. Thresholds of Significance

Appendix G of the State CEQA Guidelines

In accordance with guidance provided in Appendix G to the State CEQA Guidelines, the Proposed Project could have a potentially significant impact if it were to:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials;

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment;

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school;

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would create a significant hazard to the public or the environment;

e) For a project located within an airport land use plan, or, where such a plan has not been adopted, within two miles of a public airport or public use airport, result in a safety hazard for people residing or working in the project area;

f) For a project located within the vicinity of a private airport strip, result in a safety hazard for people residing or working in the project area;

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan;

h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands.
City of Los Angeles CEQA Thresholds Guidelines

As set forth in the L.A. CEQA Thresholds Guide 2006, the determination shall be made on a case-by-case basis, considering the following factors:

a) The regulatory framework;

b) The probable frequency and severity of consequences to people or property as a result of a potential accidental release of explosion of a hazardous substance;

c) The degree to which the project may require a new, or interfere with an existing, emergency response or evacuation plan, and the severity of the consequences;

d) The degree to which project design will reduce the frequency or severity of a potential accidental release or explosion of a hazardous substance;

e) The regulatory framework for the health hazard;

f) The probable frequency and severity of consequences to people from exposure to the health hazard; or

g) The degree to which project design would reduce the frequency of exposure or severity of consequences of exposure to the health hazard.

B. Project Impacts

i) Routine Transport, Use, or Disposal of Hazardous Materials

Construction of the Proposed Project would involve the use of those hazardous materials that are typically necessary for construction of commercial development (i.e., paints, building materials, cleaners, fuel for construction equipment, etc.). Therefore, construction of the Proposed Project would involve routine transport, use, and disposal of these types of hazardous materials throughout the duration of construction activities. Furthermore, the transport, use, and disposal of construction-related hazardous materials would occur in conformance with all applicable local, State, and federal regulations governing such activities. For example, the Proposed Project would be required to implement standard best management practices (BMPs) set forth by the City and the RWQCB which would ensure that wastes generated during the construction process are disposed of properly. Therefore, the Proposed Project would not create a significant impact related to routine transport, use, or disposal of hazardous materials during construction. Impacts would be less than significant.

The Proposed Project consists of the development of commercial uses and adding two levels of parking to an existing parking structure. The types of potentially hazardous materials associated with operation of the Proposed Project include cleaning solvents used for janitorial purposes, materials used for landscaping, and materials used for maintenance. Examples of such materials include but are not limited to lacquer thinner, chemicals for weed control, and glass cleaners. However, all potentially hazardous materials transported, stored, or used on site for daily upkeep would be contained, stored, and used in accordance with manufacturers’ instructions and handled in compliance with applicable standards and regulations. With compliance with existing local, State, and federal regulations, the transport, storage and sale of these materials would not pose a significant hazard to the public or the environment. Therefore, Project impacts related to this issue would be less than significant.
ii) Historic Uses

As previously discussed, the review of historical site use identified that the Project Site has been used for commercial purposes since 1950. No evidence of the past use, treatment, storage, disposal or generation of hazardous substances were identified in association with the current or historical use of the property. Therefore there would be no impacts associated with this issue.

iii) Asbestos-Containing Materials

As previously discussed, the Proposed Project Site contains a surface parking lot and a five-story parking structure built in 1983. The structure is built of steel-reinforced concrete with metal railings used throughout the stairwells. Given the date of construction and the type of materials used, no building components containing suspect ACMs would be likely at the Project Site.

A limited number of ACMs may still be sold in the U.S., including, but not limited to asphaltic and bituminous roofing materials and pipeline coatings. However, the use and installation of these materials is strictly controlled by both federal (EPA and OSHA) and State (Cal-OSHA) regulations, ensuring their safe installation and use. Therefore, impacts associated with an exposure to ACMs during construction and operation of the Proposed Project would be less than significant.

iv) Lead-Based Paint

As previously discussed, the Proposed Project Site contains a surface parking lot and a five-story parking structure built in 1983. The structure is built of steel-reinforced concrete with metal railings used throughout the stairwells. Given the date of construction and the type of materials used, no building components containing suspect LBP were identified during the site inspection. Further, the use of LBP was discontinued in 1979. Therefore, there would be no impacts associated with an exposure to LBP during construction and operation of the Proposed Project.

v) Polychlorinated Biphenyls

As previously discussed, the Proposed Project Site contains a surface parking lot and a five-story parking structure built in 1983. No evidence of PCB containing transformers or equipment was observed on the Project Site at the time of the site reconnaissance. Therefore, no PCBs are anticipated to be encountered on site. Further, the use of PCBs was banned in 1977. Therefore, there would be no impacts associated with an exposure to PCBs during construction and operation of the Proposed Project.

vi) Underground Storage Tanks (USTs) and Aboveground Storage Tanks (ASTs)

As previously discussed, the only above-ground or underground storage tanks identified on or in the vicinity of the Project Site were the two USTs that were formerly located on the Museum Square site immediately south of the portion of the Project Site. These USTs have been removed, and the case has been closed by the RWQCB. No USTs or ASTs are located within the Proposed Project Site. Therefore, there would be no impacts associated with the risk of upset from leaking USTs or ASTs during construction and operation of the Proposed Project.

vii) Landfills / Solid Waste

As previously discussed, no landfills or transfer stations are located within a 2,000-foot radius of the Project Site. No active hazardous waste landfills are located within Los Angeles County.
Trash bins are located within an enclosure located at the northwest corner of the Project Site. No evidence of spills and/or staining was observed on the pavement beneath the bins. No evidence of onsite disposal or landfill of solid waste material was observed on the Project Site at the time of the site reconnaissance. Further all federal, state and local regulations governing the storage and disposal of solid waste will be enforced during Proposed Project construction and operation. Therefore, there would be no impacts associated with the risk of upset regarding solid waste during construction and operation of the Proposed Project.

viii) Methane

As previously discussed, Chapter IX, Article 1, Division 71, Section 91.7103 of the LAMC, also known as the Los Angeles Methane Seepage Regulations, identifies Methane Hazard Zones and Methane Buffer Zones. The Project Site, as with every other property in the Project vicinity, is located within a Methane Hazard Zone, as designated by LADBS. Due to the potential environmental risk associated with Methane Hazard Zones, properties within a Methane Hazard Zone require methane testing and mitigation upon (re)development. In compliance with this requirement, soil-gas testing was conducted in November 2012 which confirmed methane gas concentrations of 8,000 to 402,000 ppmv beneath the Project Site.

Methane Seepage Regulations base the required methane mitigation system on the Site Design Level. There are five site design levels based on the methane concentration at the Project Site. Level I is applicable to concentration levels of 0-100 parts per million by volume (ppmv), Level II is applicable to concentrations of 101-1,000 ppmv, and so on up to Level V for concentrations greater than 12,000 ppmv.

Based on the results of the soil-gas testing, in order to ensure the safety of future occupants of the Proposed Project would be required to comply with Site Design Level V of the City’s Methane Seepage Regulations, which is applicable to sites with methane concentrations of 12,000 ppmv and over. Pursuant to the requirements of the methane regulations, the methane mitigation system may require, but not be limited to, a barrier (i.e., a membrane shield) between the building and underlying earth, installing a vent system(s) beneath the barrier and/or within the building, and installing a gas (methane) detection system. Design of the methane mitigation system would be confirmed and approved by the DOGGR, LADBS and LAFD prior to the issuance of building permits for the Proposed Project. Regulatory Compliance Measure HAZ-1 below ensures compliance with City code and regulations. Regulatory Compliance Measure HAZ-2 has been included to ensure the protection of construction workers from the potential for methane explosion during earth moving and foundation construction activities.

In addition, the Phase I ESA recommends that a contingency should be provided for handling and potential offsite disposal of natural petroleum impacted soils should they be encountered during future site construction activities. Mitigation Measure HAZ-1 below provides for the mitigation of this possibility.

With the implementation of Regulatory Compliance Measures HAZ-1, HAZ-2 and Mitigation Measure HAZ-1, potential construction and operational impacts from methane gas and petroleum impacted soil would be reduced to a less than significant level.

ix) Oil Wells

As previously discussed, there are no active or abandoned wells on or nearby the Project Site. Therefore, there would be no impacts associated with the risk of upset from active or abandoned wells on or nearby the Project Site during construction and operation of the Proposed Project.
x)
Radon

As previously discussed, the Project Site is located in an area of low potential (six percent) for indoor radon levels above the 4.0 pCi/L action level. Therefore, there would be no impacts associated with high levels of radon during construction and operation of the Proposed Project.

xi)
Proximity to a School

The closest schools to the Project Site are Cathedral Chapel School (755 S. Cochran Avenue) located approximately one-half mile southeast of the Project Site, and Hancock Park Elementary School (408 S. Fairfax Avenue) located approximately one-half mile northwest of the Project Site. There are no other schools within 0.25 miles of the Project Site. However, the George C. Page Museum, approximately 200 feet west of the Project Site, hosts numerous primary and secondary school children on field trips on a regular basis. As the Proposed Project will comply with all standards, regulations, and good housekeeping practices, it is not anticipated to emit any hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste during construction or operation. Further, implementation of Regulatory Compliance Measure HAZ-1 would prevent the build-up of methane gas at the Project Site to avert the risk of fire or explosion. Therefore, the Project is not expected to adversely affect Cathedral Chapel School, Hancock Park Elementary School or visitors to the George C. Page Museum, and impacts would be less than significant.

xii)
Proximity to an Airport or Private Airstrip

The closest public airports to the Project Site are the Burbank Airport, Santa Monica Airport and the Los Angeles International Airport (LAX). However, neither of these airports are located within two miles of the Project Site. Furthermore, the Project Site is not in an airport hazard area, nor is it located in the vicinity of a private airstrip. Therefore, no impact would occur.

xiii)
Emergency Response Plan

The Proposed Project is not located on or near an adopted emergency response or evacuation route. The Proposed Project would not cause permanent alterations to vehicular circulation routes and patterns, impede public access or travel upon public rights-of-way. Therefore, the Proposed Project would not be expected to interfere with any adopted emergency response plan or emergency evacuation plan, and no impact would occur.

xiv)
Wildland Fire

The Project Site is located in a highly urbanized area of Los Angeles and does not include wildlands or high fire hazard terrain or vegetation. The Project Site is not located in a Fire High Fire Hazard Severity Zone (VHFHSZ). Therefore, no impact from wildland fires would occur.

7 ZIMAS Op Cit.
8 Safety Element, Op cit.
9 ZIMAS, Op cit.
4. CUMULATIVE IMPACTS

Development of the Proposed Project in combination with the related projects has the potential to increase to some degree the risks associated with the use and potential accidental release of hazardous materials in the City of Los Angeles. However, following the implementation of Regulatory Compliance Measures RC-HAZ-1 and RC-HAZ-2, and Mitigation Measure MM-HAZ-1, the potential impact associated with the Proposed Project would be less than significant and, therefore, not cumulatively considerable. As with the Proposed Project, with respect to the related projects, the potential presence of hazardous substances would require evaluation on a case-by-case basis, in conjunction with the development proposals for each of those properties. Further, compliance with all applicable local, State, and federal laws regarding hazardous materials would further reduce impacts associated with the development of the related projects. The Proposed Project would not contribute to a cumulatively significant impact with respect to hazardous materials. As a result, cumulative impacts would be less than significant.

5. REGULATORY COMPLIANCE MEASURES AND MITIGATION MEASURES

Regulatory Compliance Measures:

RC-HAZ-1 As the Project Site is within a methane zone, prior to the issuance of a building permit, the Site shall be independently analyzed by a qualified engineer, as defined in Ordinance No. 175,790 and Section 91.7102 of the LAMC, hired by the Project Applicant. The engineer shall investigate and design a methane mitigation system in compliance with the LADBS Methane Mitigation Standards for the appropriate Site Design Level which will prevent or retard potential methane gas seepage into the building. The Applicant shall implement the engineer’s design recommendations subject to DOGGR, LADBS and LAFD plan review and approval.

RC-HAZ-2 During subsurface excavation activities, including borings, trenching and grading, OSHA worker safety measures shall be implemented as required to preclude any exposure of workers to unsafe levels of soil-gases, including, but not limited to, methane.

Mitigation Measure:

MM-HAZ-1 If any visual or olfactory indication of potentially contaminated soil, groundwater and/or toxic materials is encountered during demolition, excavation, grading or foundation construction activities, activities shall be temporarily halted. The City of Los Angeles and other appropriate agencies shall be contacted for consultation on the appropriate level of mitigation of the contamination (e.g., excavation and disposal, or treatment in-situ (in-place)) to be implemented so as to render the site suitable for construction activities to resume.

6. LEVEL OF SIGNIFICANCE AFTER MITIGATION

With the implementation of the regulatory compliance measures and the mitigation measure, impacts related to hazards and hazardous materials would be less than significant.