III. Environmental Setting
III. Environmental Setting

A. Overview of Environmental Setting

1. Aesthetics, Views, Light/Glare, and Shading
 a. Aesthetics/Visual Quality

 The project site is located in an urbanized setting in the southwestern portion of the Boyle Heights Community. Boyle Heights contains 3,807 acres, or roughly 6 square miles, and is situated at the eastern boundary of the City of Los Angeles and is surrounded by the City of Vernon to the south, the unincorporated community of East Los Angeles to the east, the communities of Lincoln Heights and El Sereno to the north and the Los Angeles River and downtown to the west. The Boyle Heights Community contains a mix of residential, commercial, industrial, open space, and public facility land. Outside of the downtown skyline, buildings are mostly of a low-rise character of one and two story buildings, although taller buildings are located over the larger area in an interspersed manner. Overall, the visual character of the area surrounding the project site can be described as urban mixed-use defined by a high degree of activity, clear segmentation between adjacent land uses, and a large number of older structures in poor condition.

 The project site is currently occupied by apartment buildings and accessory structures within a development referred to as the Wyvernwood Garden Apartments (Wyvernwood), a planned community originally built in 1938 that reflects the Garden City movement that was prevalent in the early part of the twentieth century. The project site includes a total of 256 buildings (153 residential buildings, 98 garage structures, and five non-residential buildings) that provide 1,187 dwelling units and ancillary structures for parking, laundry, and other related uses. The residential buildings are two stories in height, accompanied by single-story garages and surface parking areas. The non-residential buildings include two single-story laundry buildings, a recreation room, a two-story leasing office, a security dispatch office, a maintenance storage room, and two maintenance workshops. Overall, the visual character of the project site can be described as urban residential defined by a cohesive development plan that visually and physically separates it from the surrounding community. While the visual character of the project site exhibits a recognized sense of place, on-site features appear dated and in a state of dilapidation consistent with the property’s age.
The Wyvernwood Apartments site was formally determined eligible for listing in the National Register of Historic Places as an historic district through Section 106 review by the Los Angeles Department of Housing and Community Development. Because it was formally determined eligible for listing on the National Register, Wyvernwood is also listed on the California Register of Historical Resources. Thus, even though the individual buildings on-site are aging and the site has experienced deterioration, the historic district that occupies the project site is considered a visual resource for purposes of this analysis.

b. Views

Due to the relatively flat topography and developed nature of the project area, public views from most public street level locations are generally short in range and limited to the immediately surrounding urban landscape (i.e., low-rise buildings, roadways, and trees/landscaping). Private views of the project site are available from immediately adjacent private uses including the residential, commercial, retail, and industrial uses surrounding the site. Additional discussion of views from the Project area is provided further in Section IV.A, Aesthetics/Visual Quality/Views, of this Draft EIR.

c. Light/Glare

Existing nighttime lighting sources include pole-mounted streetlights, exterior building lighting at building entrances, low-level security lighting around parking areas, vehicle headlights along internal roadways and parking areas, and interior light spillage from on-site buildings. Lighting is generally concentrated around buildings and roadways, while the open space and yard areas are not substantially lit. As a result, on-site light sources generally result in low to medium ambient nighttime light levels within the project site.

Daytime glare is generally associated with reflected sunlight from buildings with highly reflective surfaces. The existing buildings on the project site do not generate substantial daytime glare since these structures do not feature reflective glass, shiny surfaces, or metal or other reflective materials in the building façades. Some daytime glare emanates from sunlight reflecting off vehicles parked in surface parking areas. These glare sources are not considerable in the context of the urban environment.

To the south of the project site, light is generated by several institutional uses and associated park/recreational facilitates, including the Dacotah Street Combination Children’s Center, Dena Elementary School, the Lou Costello Jr. Recreation Center, and a senior center to the southeast, and the Carmen Lomas Garza Primary Center, an associated park/recreation center, and a government service building to the southwest.
Commercial and light industrial uses also generate light to the south of the project site along Olympic Boulevard. Light sources associated with these uses include building, signage, and security/parking lighting. More notably, overhead floodlights used to light the outdoor playfields within the Lou Costello Jr. Recreation Center are a primary light source in the vicinity when the playfields are in use. The commercial and industrial uses to the west of the project site along Soto Street also generate light from building, signage, and security/parking lighting. Overall, land uses to the south and west of the project site utilize light sources generally resulting in medium to high ambient nighttime light levels.

d. Shade and Shadow

The existing buildings on the project site are low-rise (one to two stories). As such, the existing on-site buildings do not cast extensive shadows or unique off-site shading patterns. The vast majority of adjacent structures in the immediate vicinity are also low-rise, with one notable exception being the nine-story Sears Building at the southwest corner of Soto Street and Olympic Boulevard. Additionally, a five-story retirement home and three-story residential building are also located across the street from the Sears Building on the north side of Olympic Boulevard.

2. Air Quality

a. Air Quality

The project site is located within the South Coast Air Basin (Air Basin), an approximately 6,745-square-mile area bounded by the Pacific Ocean to the west and the San Gabriel, San Bernardino, and San Jacinto Mountains to the north and east. The Air Basin includes all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties, in addition to the San Gorgonio Pass area in Riverside County. The regional climate within the Air Basin is considered semi-arid and is characterized by warm summers, mild winters, infrequent seasonal rainfall, moderate daytime onshore breezes, and moderate humidity. The air quality within the Air Basin is primarily influenced by meteorology and a wide range of emissions sources, such as dense population centers, heavy vehicular traffic, and industry.

Air pollutant emissions within the Air Basin are generated primarily by stationary and mobile sources. Stationary sources can be divided into two major subcategories: point and area sources. Point sources occur at a specific location and are often identified by an exhaust vent or stack. Examples include boilers or combustion equipment that produce electricity or generate heat. Area sources are widely distributed and include such sources as residential and commercial water heaters, painting operations, lawn mowers, agricultural
fields, landfills, and some consumer products. Mobile sources refer to emissions from motor vehicles, including tailpipe and evaporative emissions, and are classified as either on-road or off-road. On-road sources may be legally operated on roadways and highways. Off-road sources include aircraft, ships, trains, and self-propelled construction equipment. Air pollutants can also be generated by the natural environment such as when high winds suspend fine dust particles.

Both the federal and State governments have established ambient air quality standards for outdoor concentrations of various pollutants in order to protect the public health and welfare. These pollutants are referred to as “criteria air pollutants” as a result of the specific standards, or criteria, which have been adopted for them. The national and State standards have been set at levels considered safe to protect public health, including the health of sensitive populations such as asthmatics, children, and the elderly with a margin of safety; and to protect public welfare, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings.

b. Greenhouse Gas Emissions

Greenhouse gasses (GHGs) reflect shortwave radiation back towards the earth, resulting in a warming of the atmosphere. This phenomenon is known as the “greenhouse effect.” Increased concentrations of GHGs in Earth’s atmosphere may potentially lead to global climate change and potentially such conditions as rising surface temperatures, melting icebergs and snowpack, rising sea levels, and the increased frequency and magnitude of severe weather conditions.

GHGs are the result of both natural and human-influenced activities. The six most globally important human-influenced GHGs include carbon dioxide (CO₂), methane, nitrous oxide, haloalkanes, perfluorocarbons, and sulfur hexafluoride. These gases have different potentials for trapping heat in the atmosphere, called global warming potential. Carbon dioxide is the most abundant GHG in the atmosphere. As reported by the California Energy Commission, California contributes 1.4 percent of global and 6.2 percent of national GHG emissions. Approximately 80 percent of greenhouse gases in California are carbon dioxide produced from fossil fuel combustion.

The project site is currently occupied by apartment buildings and accessory structures consisting of 143 two-story buildings with 1,102 residential units of three to six rooms each. As such, existing on-site operations generate GHG emissions pollutant emissions from a variety of sources. Mobile source emissions are generated by motor vehicle trips to and from the project site associated with the operation of the apartments. The consumption of fossil fuels to generate electricity and to provide heating and hot water for
the project site also creates GHG emissions. Other sources at the project site that would be associated with embodied energy and subsequent generation of GHG emissions include water usage, wastewater generation, and solid waste generation and disposal.

3. Cultural Resources

a. Historic Resources

The Wyvernwood Apartments site was formally determined eligible for listing in the National Register of Historic Places as an historic district through Section 106 review by the Los Angeles Department of Housing and Community Development. Because it was formally determined eligible for listing on the National Register, Wyvernwood is also listed on the California Register of Historical Resources. District boundaries are contiguous with the legal boundaries of the Wyvernwood Apartments property.

The Wyvernwood Apartments property is historically significant as an intact example of a Depression-era Garden Apartment housing community in Los Angeles, whose site plan and design reflects the urban planning and community design theories that developed out of the Garden City Movement, European Modernism, and Depression Era social concerns. Wyvernwood was the first large-scale Garden Apartment complex in Los Angeles that was backed by the Federal Housing Administration (FHA) and is one of two existing large-scale Garden Apartment complexes in Los Angeles constructed prior to World War II. The site plan, design, and landscape of the Wyvernwood Apartments complex exemplify the design and social theories that defined Depression-era planning. The period of significance for the Wyvernwood Apartments extends from 1938 through 1941 when construction on the site was completed.

The Wyvernwood Garden Apartments property has retained integrity of location, setting, feeling and association. The removal of original architectural elements and landscape features is such that the integrity of materials, design, and workmanship of the Wyvernwood property has been compromised. The historic significance of the Wyvernwood property, however, rests largely with the design of its site plan and the integration of buildings, landscape, and circulation in accordance with the planning and design theories of the 1930s. The original location, configuration, and spatial relationships of buildings, landscapes and circulation elements remain largely unchanged since the period of significance such that the Wyvernwood property continues to retain integrity of design and workmanship despite the removal of individual architectural and landscape elements.
b. Archaeological Resources

No archaeological sites have been recorded within the boundaries of the project site. Only one site with archaeological potential, site 30-176630, a historical period railroad right-of-way, has been recorded within a 0.5-mile radius of the project site. The railroad line is currently used by the Union Pacific Railroad; however, site records suggest that use of the alignment may date to as early as the 1870s. The railroad line trends northwest-southeast approximately 0.5 mile south of the project site and extends in excess of 20 miles in both directions from the project area. No facilities associated with the railroad are likely to occur in the project site.

c. Paleontological Resources

There are no known fossil vertebrate localities that lie below the project area, but noted potential fossils based on the underlying geology and finds at other locations. Specifically, the closest vertebrate fossil locality is located northeast of the proposed project area just east of the Long Beach Freeway (I-710) between the San Bernardino Freeway (I-10) and the Pomona Freeway (Highway 60), a few miles to the east. This locality produced specimens of fossil horse, Equus, at unknown depth. The next closest vertebrate fossil locality in these sediments is LACM 6024, approximately 6 miles northwest of the proposed project area at the intersection of Wilshire Boulevard and Western Avenue, which produced a specimen of fossil mammoth, Mammutthus, at a depth of 65 feet below the surface.

4. Geology

The gentle topography of the site presents a westward increase in elevation of approximately 65 feet over a distance of nearly 3,000 feet. The highest elevation of the site is at the northwest corner, with the lowest point at the northwest corner at the intersection of Grande Vista Avenue and Lydia Drive. From this point, an open and unlined flood control channel extends through the center of the site in a general westerly direction.

The closest faults identified near the project site include the Puente Hills Blind Thrust Fault, a thrust system made up of the Los Angeles, Santa Fe Springs, and Coyote Hills segments, which passes below the project vicinity but does not reach the ground surface, and the Upper Elysian Park Blind Thrust Fault, located approximately 2.7 miles
from the site. The closest active fault identified for the project site is the Hollywood-Raymond Fault located approximately 6 miles north of the project site.

The project site is underlain by fill soils to a maximum depth of 18 feet. The fill soils consist primarily of moist, stiff to medium density, fine-grained silty to sandy clays and clayey to silty sands which are yellowish brown to brownish grey, mixed with some gravel. The native soils underlying the fill on-site consist predominantly of sands, silty sands, clayey sands, and sandy silts. The native soils are generally fine-grained with some gravel and cobbles, range from orange brown to yellowish brown to brownish grey in color, and are dense to very dense and hard. The geologic materials consist predominantly of alluvial sediments deposited by rivers and streams, typical of the Los Angeles County area. The earth materials identified on-site are in the very low to moderate expansion range.

Based on the seismic hazard zone map for the Los Angeles Quadrangle, the project site is not located within a State-designated liquefaction zone of required investigation. The project site is not located within an area designated by the California Geological Survey or by the City of Los Angeles for potential liquefaction. Additionally, the probability of seismically induced landslides on the site is low due to the gentle sloping nature of the site.

5. Hazards and Hazardous Materials

As part of the Phase I report, various local, State, and Federal environmental agency databases were reviewed to ascertain whether the project site or any properties within a determined radius are known to contain hazardous materials, contaminated surface water or groundwater, or leaking underground storage tanks (LUSTs). The project site is listed on the State Hazardous Waste Information System (HAZNET) database, presumably for the disposal of lead waste from an extensive lead abatement program conducted on-site in 1999. The project site is also listed on the State Department of Health

2 California Geological Survey, Department of Conservation, Division of Mines and Geology Special Publication 42, Seismic Hazards Zone Map—Los Angeles Quadrangle, Released March 25, 1999.

4 California Geological Survey, Department of Conservation, Division of Mines and Geology Special Publication 42, Seismic Hazards Zone Map—Los Angeles Quadrangle, Released March 25, 1999.

5 City of Los Angeles Planning Department, Safety Element of the General Plan, Exhibit B, Areas Susceptible to Liquefaction, October, 1993.
Services database in association with a DTSC Hazardous Waste Tracking System report for the project site, indicating that a Cal-EPA identification number was issued to the site. That identification number was also likely assigned to the property during the lead abatement program in 1999 and has been inactive since then. Conversely, there is no presence of engineering or industrial control measures (e.g., special building liners, treatment facilities, use restrictions) designed to manage or eliminate hazardous substances on-site.

As discussed above, lead was widely used as a major ingredient in paints prior to 1950 and other materials until 1972. An extensive lead abatement program was conducted on-site from late 1998 through 1999, and all building interiors were made lead-free, while building exteriors were made lead-safe, in accordance with a work plan established with the County of Los Angeles Department of Health Services. Additional lead-based paint sampling was not conducted as part of the recent Phase I report for the project site. However, due to the age of the structures and the known former presence of lead on-site, it is possible that trace amounts of lead remain.

Testing for asbestos was not conducted as part of the Phase I report for the project site. However, as described above, asbestos was widely utilized in the building industry prior to 1979 for a variety of uses, including acoustic and thermal insulation and fireproofing. As such, given the age of the existing buildings on-site, it is likely that asbestos is present in some of the building materials.

No significant quantities of hazardous substances were noted on-site at the time of the Phase I inspection. No evidence of underground storage tanks (USTs) was observed during the site. Additionally, no oil, gas, or geothermal field exists on or in the vicinity of the project site, and the project site is not located within a City-designated methane zone or methane buffer zone.

6. Hydrology and Water Quality

 a. Surface Water Hydrology

 The project site lies within the Los Angeles River Watershed, a drainage area that is shaped by the path of the Los Angeles River and covers approximately 871 square miles. The Los Angeles River Watershed encompasses the Santa Susanna Mountains to the

west, the San Gabriel Mountains to the north and east, the Santa Monica Mountains and Los Angeles coastal plain to the south, and ends at the Long Beach Harbor. Within this watershed, stormwater that does not percolate through the ground into the groundwater table is directed into storm drains that eventually discharge into the Los Angeles River, which in turn discharges to the Pacific Ocean.

The topography of the project site presents a westward increase in elevation of approximately 65 feet over a distance of nearly 3,000 feet. The highest elevation of the project site is at the northwest corner, with the lowest point at the northwest corner at the intersection of S. Grande Vista Avenue and Lydia Drive. Approximately 54 percent of the project site is currently developed with impervious surfaces, including several apartment buildings and accessory structures as well as surface parking lots and public streets/sidewalks. The remaining 56 percent of the project site consists of pervious surfaces including lawn and landscaped areas interspersed around buildings as well as “The Mall,” a landscaped open space/drainage channel running from east to west, with a perpendicular section bisecting the channel from north to south.

The site consists of two separate primary drainage areas. The first drainage area connects to the City of Los Angeles storm drain that traverses the site. Four public storm drain inlets on-site connect to the City storm drains and are located at Glenn Avenue and Camulos Place; Glenn Avenue and Hostetter Street; Glenn Avenue and Camulos Street; and Rosalind Place near Lydia Drive. The tributary areas associated with these inlets comprise an area of 34.2 acres within the project boundary as well as 7.3 acres beyond the project boundary. The second drainage area within the project site flows to the County drainage system and includes the central open space area in Wyvernwood known as the Mall. The Mall does not have an underground storm drain but is surface drained by a grassy swale. This open space area is comprised of 34.5 acres. Two additional small portions of the site drain to 8th Street and Olympic Boulevards. These streets are served by other City of Los Angeles inlets and storm drains that drain to the Los Angeles River.

To estimate the existing stormwater runoff rates at the project site, hydrology calculations were performed using the Los Angeles County of Public Works 2006 Hydrology Manual. Runoff rates were calculated for 50-year storm events. The existing stormwater runoff rate at the project site is approximately 152.5 cubic feet per second (cfs) during a 50-year storm event. Of this amount, approximately 78.2 cfs drains to the City storm drain that runs through the project site, 65 cfs drains to the County storm drain, 3.8 cfs drains to the off-site City storm drain located in Olympic Boulevard, and 5.5 cfs drains to the off-site City storm drain located in 8th Street.8

b. **Surface Water Quality**

The Los Angeles River Watershed has diverse patterns of land use. Forest or open space covers the upper half of the watershed, while the remaining watershed is highly urbanized with commercial, industrial, or residential uses. The project site drains to the Los Angeles River Reach 2 via existing storm drains. The Los Angeles River at this point is a trapezoidal concrete storm drain channel. At its closest point, the Los Angeles River is 0.33 mile west of the site. Storm water runoff from the site travels approximately 1 mile through storm drains to reach the river. According to the Los Angeles Region Integrated Report Clean Water Act Section 305(b) Report and Section 303(d) List of Impaired Waters, 2008 Update, the Los Angeles River Reach 2 is polluted by Ammonia, Coliform Bacteria, Copper, Lead, Nutrients (Algae), Oil and Trash. Existing stormwater runoff from the project site has the potential to contribute oil and grease, suspended solids, gasoline, pesticides, and pathogens to the stormwater conveyance system. Stormwater from the project site is currently not treated prior to entering the storm drain system.

Based on the California Division of Mines and Geology *Historically Highest Groundwater Contours Report*, groundwater at the project site has a historic high groundwater level on the order of 150 feet below grade. In addition, 12 exploratory borings, which varied in depth from 40 to 100 feet below the existing ground surface, did not encounter groundwater at the project site. However, some soils exposed by exploratory borings were found to be above optimum moisture content.

7. **Land Use**

a. **Project Site**

The project site is located in the southwestern portion of the Boyle Heights Community Plan Area of the City of Los Angeles. It is approximately 14.5 miles east of the Pacific Ocean, 2 miles southeast of downtown Los Angeles, and approximately 0.4 miles east of the Los Angeles River. The site consists of approximately 68.8 acres (excluding adjacent perimeter roadways) and is generally bordered by East 8th Street (referred to herein as 8th Street) to the north, Grande Vista Avenue to the east, and Olympic Boulevard to the south, with the western boundary located parallel to and just east of South Soto Street (referred to herein as Soto Street). Nearby jurisdictions include the unincorporated East Los Angeles area of the County of Los Angeles to the east, the City of Vernon to the south, and the City of Commerce to the southeast.

The project site is made up of 153 residential buildings, 98 garage structures, five non-residential buildings, and lawn and landscaped areas. The residential development
includes 1,187 dwelling units, consisting of 22 studios, as well as 451 one-bedroom, 638 two-bedroom, and 76 three-bedroom apartments. The residential buildings are two stories in height, with single-story garage structures dispersed throughout the property. The non-residential buildings include two single-story laundry buildings, a recreation room, a two-story leasing office, a security dispatch office, a maintenance storage room, and two maintenance workshops. Approximately 9 acres of the site are comprised of dispersed open space areas that include lawns and mature trees, with the largest open space area located within the central portion of the site.

The Boyle Heights Community Plan designates the entire project site for Low Medium II Residential (multi-family) uses. The Low Medium II Residential category typically consists of two detached single-family structures or duplexes on one lot, but also includes large older single-family residential structures that have been converted into triplexes and four-plexes or smaller apartment buildings with an average of about 6 to 8 units, depending on the lot size.

Pursuant to the Los Angeles Municipal Code (LAMC), the project site is zoned Restricted Density Multiple Dwelling Zone and Height District 1 (RD 1.5-1). Uses permitted in the RD 1.5 zone include single, duplex, and multi-family housing including apartments; public parks, playgrounds, and community centers; and garages, recreation rooms, and accessory uses. This zoning designation allows residential densities of approximately 29 units per acre (based on a minimum area of 1,500 square feet per unit) and a Floor Area Ratio (FAR) of 3:1. Within the RD 1.5 zone, Height District 1 allows building heights of up to 45 feet and FARs of up to 3.0:1. Setback requirements in the RD 1.5 zone are 15 feet minimum for front and rear yards, with varied side yard requirements based on lot size that include a 3-foot minimum plus 1 foot for each story above the second story, up to 16 feet.

Under the provisions of LAMC Section 12.22 A 25, the project site is eligible for a density bonus of up to 35 percent if development meets certain standards for the provision of affordable housing. Such a density bonus would increase the allowable density for the RD 1.5-1 zone to up to approximately 39 units per acre, depending on the number and affordability level of affordable units.

b. Surrounding Uses

The project vicinity is highly urbanized and built out with predominantly low- to mid-rise buildings. Land uses surrounding the site include a mix of residential, commercial, and industrial uses. Surrounding uses north of the project site include single-family residences, with a few interspersed retail uses across 8th Street. These residential uses extend
northward to the I-5 Freeway, which forms a physical boundary within the project vicinity, with residential uses also located further to the north. Industrial uses are also located south of Olympic Boulevard extending into an old industrial district that was developed along a network of railroad lines. Several railroad lines remain operational less than one mile south of the project site. Uses east of the project site include a series of multi-family residential buildings operated by the Housing Authority of the City of Los Angeles in a development referred to as Estrada Courts. Dense residential uses also extend further to the east, adding to the urban environment. To the west along Soto Street are commercial uses (retail stores, gas stations, fast-food restaurants, and an auto repair shop) as well as industrial uses, with industrial uses to the southwest and extending west to the Los Angeles River and further west to the downtown core.

The Boyle Heights Community Plan designates adjacent properties for residential development (Low Medium I and II) on the north and east; Public Facilities and Open Space adjacent to the southeast and south; industrial uses (Limited Industrial, Light Industrial, and Heavy Industrial) to the south, southeast, and west; and commercial uses (Neighborhood Commercial, Community Commercial, and Regional Center) to the immediate west and southwest.

The properties surrounding the project site are zoned with a variety of residential, commercial, and manufacturing designations under the LAMC. Properties to the north and east are designated with a variety of residential designations, primarily RD 1.5-1 and Two-Family Dwellings (R2-1), interspersed with pockets of Commercial (C2-1) sites along 8th Street and other major roadways. Some of the C2 sites include [Q] conditions that specify special lighting limitations, landscaping, and signage requirements required for compatibility with nearby residential development. Zoning to the south includes Public Facilities (PF-1XL) and Open Space (OS-1XL) adjacent to the site, and an array of Limited and Light Industrial (M1-1 and M2-1, respectively) designations south of Olympic Boulevard, with Heavy Industrial (M3-1) further to the south. Zoning west and southwest of the project includes C2-1, M2-1, and M3-1.

Nearly all of the properties surrounding the project site, like the project site itself, fall within Height District 1, with the exception of the adjacent PF and OS properties, which are designated as Extra Limited Height District 1. As noted above, Height District 1 allows development with an FAR of up to 3.0:1 for residential zones, with a 45-foot height limit in RD 1.5 and a 33-foot height limit in the R2 zone. Within commercial and industrial zones, Height District 1 allows an FAR of 1.5:1 and unlimited building heights.
8. Noise

The existing noise environment in the project vicinity is comprised of primarily of auto traffic on local roadways including Olympic Boulevard, Soto Street, 8th Street, and various freeways including the Golden State/Santa Ana Freeway (I-5), the Santa Monica Freeway (I-10), the Pomona Freeway (SR-60), and Hollywood Freeway (US 101). Other noise sources in the vicinity of the project site include mechanical equipment from buildings, occasional emergency vehicles (i.e., siren sounds) and aircraft flyovers. Existing noise-sensitive uses within 500 feet of the project site include: single-family residences located to the north; multi-family residential uses to the east; several schools located to the southeast and southwest including Dena Elementary School, the Dacotah Street Combination Children’s Center (Dacotah Children’s Center), and Carmen Lomas Garza Primary Center, with associated outdoor recreational uses including the Lou Costello Recreational Center, the Costello Senior Citizen Center, and a park/recreation center adjacent to the Carmen Lomas Garza Primary Center; and the Bethany Baptist Church located in the southeast corner adjacent to the project site.

Based on field observations and measured sound data, the existing noise environment in the vicinity of the project site is influenced primarily by auto traffic on adjacent roadways. The measured noise levels ranged from 58.0 L_{eq} (along a smaller residential street) to 69.3 L_{eq} (along a major thoroughfare). Currently the only source of substantial ground-borne vibration in the project vicinity is vehicular travel (e.g., refuse trucks, delivery trucks, school buses, and transit buses) on local roadways.

9. Employment, Housing, and Population

a. Employment

There are no official counts of employment or unemployment within either the City of Los Angeles Subregion or the Boyle Heights Area; however, an estimate of the number of jobs can be derived from SCAG forecasts. An estimated 1,838,191 jobs are present in the City of Los Angeles Subregion, and, for information purposes only, 228,038 jobs are present within the Boyle Heights Area, based on SCAG’s 2008 regional growth forecast. According to the U.S. Census for 2000 (the only available estimate of unemployment for these two geographic areas), the unemployment rate stood at 9.3 percent for the City of Los Angeles and 15.9 percent for the Boyle Heights Area.

b. Housing

According to SCAG’s regional growth forecast estimates for 2008, there were 1,362,236 households in the City of Los Angeles Subregion and 49,067 households in the Boyle Heights Area, according to an aggregation of census tract data for the Subregion. According to Claritas estimates for 2008, there were 54,224 total housing units and 51,409 total occupied units, or households, in the Boyle Heights Area. The latter estimate corresponds closely to the estimate of 49,067 households in 2008 based on the SCAG 2008 Regional Growth Forecast. The Boyle Heights Area had a higher concentration of renter-occupied units than the Subregion in both 2000 and 2008, a higher proportion of its units in multi-family structures of two or more units in 2000 (2008 data unavailable), and higher vacancy rates in both 2000 and 2008. Another important characteristic of the Boyle Heights Area housing stock is its age, which is generally old. Approximately 42 percent of units were constructed prior to 1940. This is consistent with the fact that this area is one of the oldest neighborhoods in the City of Los Angeles.

The project site is currently occupied by apartment buildings and accessory structures known as the Wyvernwood Garden Apartments, a planned community originally built in 1938. The project site includes a total of 256 buildings (153 residential buildings, 98 garage structures, and five non-residential buildings) that provide 1,187 dwelling units and ancillary structures for parking, laundry, and other related uses.

c. Population

An interpolation of data from the adopted SCAG regional growth forecast indicates that the population of the City of Los Angeles Subregion was 4,102,374 in 2008. According to Claritas estimates, there were 205,542 people residing in the Boyle Heights Area as of 2008. This estimate corresponds closely to a total population estimate of 208,869 in 2008 based on the SCAG 2008 Regional Growth Forecast. The Boyle Heights Area in 2008, as compared with the Subregion as a whole, has: (1) a much higher population density (2.0 times the Subregion density); (2) a much younger age profile (current median age of 30.8 years versus 34.2 years in the Subregion); (3) larger average household sizes (3.59 vs. 2.88 in the Subregion); (4) a higher proportion of Hispanic/Latino households (82 percent vs. 47 percent in the Subregion); and (6) lower household, family and per-capita incomes.

10 Nielsen Claritas is a widely recognized, online source for customizable U.S. demographic data for the current-year and five-year projections. The company’s census data products, market segmentation products and other consumer research data products, are frequently used in retail market analysis throughout the U.S. See, generally, www.claritas.com/sitereports/Default.jsp.

11 Ibid.
Information about existing project site households is not available, other than what can be approximated from the 2000 U.S. census. Based on data for census tract 2051.10, which encompasses most, but not quite the entire project site, average household size was nearly twice (5.18 persons per household) the Subregion average (2.83). Applying this factor to the 1,187 on-site dwelling units, the project site is estimated to have an existing population of approximately 6,145 persons. Of this number, based upon a review of the number of tenants listed on leases, it is estimated that approximately 1,537 people are not named on their household lease.

10. Public Services

a. Police Protection

Police protection is provided to the project site and the surrounding area by the City of Los Angeles Police Department (LAPD). The project site is located in the Central Bureau service area, which covers an area of approximately 65 square miles in the eastern portion of the City and has a population of approximately 900,000 residents. The project site is served by the Hollenbeck Community Police Station located at 2111 East 1st Street, approximately 1.3 miles north of the project site. Based on the Hollenbeck Community Police Station service population of 234,731 residents and approximately 245 sworn officers, the officer to resident ratio is approximately one (1.04) officer per 1,000 residents.

b. Fire Protection

Fire prevention and suppression services and emergency medical services to the project site and the surrounding area are provided by the Los Angeles Fire Department (LAFD). There are three fire stations located in the vicinity of the project site: Fire Station Nos. 25, 17, and 2. Fire Station No. 25 is the designated “first in” station for a majority of the project site. LAFD “first in” districts, or fire service areas, are based on response distances and times between the City’s neighborhood fire stations. Fire Station No. 25 is located at 2927 Whittier Boulevard, approximately 0.5 mile north of the project site. While the majority of the project site is located within the “first-in” service area of Fire Station No. 25, that portion of the site located west of Glenn Avenue is located within the “first-in”

III. Environmental Setting

service area of Fire Station No. 17. Fire Station No. 17 is located at 1601 South Santa Fe Avenue, approximately 1 mile west of the project site.

Emergency vehicle access is currently provided to the project site from 8th Street to the north, Grande Vista Avenue to the east, Olympic Boulevard to the south, and Soto Street to the west. Emergency access within the site is provided via interior public streets including Camulos Place, Rosalind Place, and Glenn Avenue.

Water for firefighting purposes is supplied to the project site via existing City of Los Angeles Department of Water and Power (LADWP) water mains and fire hydrants located within the site and along adjacent streets. The water mains serving the project site include an 8-inch water line in 8th Street, an 8-inch water line in Grande Vista Avenue, a 12-inch water line in Dacotah Street, an 8-inch water line in Olympic Boulevard, and a 12-inch water line in Soto Street. There are also existing public water mains in the streets within the project site, including a 12-inch water line in Glenn Avenue and a 6-inch water line in Camulos Place, a 6-inch water line in Rosalind Drive, an 8-inch water line in Lydia Drive, a 6-inch water line in Orme Avenue, and an 8-inch water line in Camulos Street. There are 27 fire hydrants currently located on-site.

c. Schools

Public school services in the City of Los Angeles are provided by LAUSD. LAUSD is the second largest public school district in the nation in terms of enrollment, encompassing approximately 710 square miles and serving the City of Los Angeles and all or portions of 32 other cities. During the 2007–2008 school year, LAUSD provided kindergarten through senior high school (K–12) education to approximately 694,288 students enrolled in 1,190 schools and centers including 436 elementary schools, 75 middle schools, 64 senior

15 The area served by Fire Station No. 17 is generally bounded by Central Avenue, Olympic Boulevard, 8th Street, Alameda Street, 7th Street, Mill Street, 6th Street, Mateo Street, 4th Street, Mission Road, and Whittier Boulevard on the north; U.S. Route 101, Soto Street, 8th Street, Glenn Boulevard, Orme Avenue, Olympic Boulevard, and Grand Vista Avenue on the east; the City boundary and 24th Street on the south; and Long Beach Avenue, Washington Boulevard, Hooper Avenue, Newton Street on the west. Navigate LA, http://navigatela.lacity.org/index.cfm, accessed March 1, 2010.

16 Email correspondence, Michael Theule, Fire Inspector II, LAFD Hydrants and Access Unit, October 23, 2008.
high schools, 194 early education centers and occupational centers, and 118 charter schools and centers.\(^{17,18}\)

LAUSD is currently divided into eight local districts, each with its own superintendent, in order to provide for more local control and accountability for academic performance. The project site is located within District 5. During the 2007–2008 school year, District 5 enrolled 89,702 students, although recent trends also indicate that student enrollment within the district has steadily decreased over the past few years.\(^{19}\) The public schools that currently serve the project site include Carmen Lomas Garza Primary Center (Garza PC), Dena Elementary School, Sunrise Elementary School, Hollenbeck Middle School, Stevenson Middle School, and Roosevelt Senior High School.\(^{20}\)

Based on matching enrolled students with home addresses within the project site, LAUSD estimates that 534 elementary school students, 245 middle school students, and 271 senior high school students residing at the project site currently attend LAUSD schools, for a total of 1,050 LAUSD students.\(^{21}\)

d. Parks and Recreation

The City of Los Angeles Department of Recreation and Parks is responsible for the provision, operation, and maintenance of parks and recreational facilities in the project vicinity. Currently, the DRP maintains and operates more than 390 sites for recreational use including: 180 recreation centers, 59 swimming pools, 13 municipal golf courses, nine lakes, seven camps (both within and outside of City limits), more than a dozen museums and historic sites, and hundreds of programs for youth, seniors, the physically disabled, and volunteers. The DRP also administers more than 15,600 acres of parkland, including 4,217 acres in Griffith Park, one of the largest municipal parks within the boundaries of an American city.\(^{22}\) As of 2008 (the existing conditions year for the project), the City of Los Angeles as well as the Boyle Heights Community Plan Area, within which the project site is

\(^{18}\) As the Notice of Preparation of an EIR for the project was publicly circulated in June 2008, in accordance with CEQA, existing conditions in the EIR are assumed to be 2008 conditions. At that time, the 2007–2008 school year was the most recently completed school year for which data was available.

\(^{19}\) LAUSD Local District 5 Profile, go to http://search.lausd.k12.ca.us/cgi-bin/fccgi.exe?w3exec=PROFILE0 and select Local District 5, accessed July 13, 2010.

\(^{20}\) Written correspondence, Glenn Striegler, LAUSD Environmental Assessment Coordinator, November 20, 2008.

\(^{21}\) 2008 data, provided by LAUSD in October 2009.

\(^{22}\) Los Angeles Department of Recreation and Parks, Who We Are, www.laparks.org/dos/dept/who.htm, accessed August 2, 2010.
located, both had a park ratio of 0.70 acre of neighborhood and community parkland per 1,000 residents.\(^{23}\)

The project site is located in the Metro Region of the DRP’s jurisdiction. Several park and recreational facilities are located within a 2-mile radius of the project site, as discussed in Section IV.J.4, Parks and Recreation, of this Draft EIR. Given its location adjacent to the project site, Costello Recreation Center is the DRP facility most easily accessible to existing site residents. Lou Costello Recreation Center, located immediately southeast of the project site at 3141 East Olympic Boulevard, includes Costello Pool, the Costello Senior Citizen Center, and Hostetter Playground, as well as various ball courts and fields, a gymnasium, picnic area, auditorium, and community room.

On the project site, the existing contiguous grassy open space consists of approximately 9.5 acres. While the open space is relatively significant in size, its awkward configuration and uneven grade limits its usefulness and makes it difficult to provide high-quality passive and active recreational opportunities for the residents of the existing site and the surrounding community. In addition to the contiguous open space there are approximately 9.71 acres of “interstitial open space” composed of bits and pieces of open space formed by the gaps between buildings or courtyards within buildings. In some cases these spaces have grass or plantings, and in some cases these spaces are comprised of dirt surfaces. While some of these areas are grassy, because they are small, irregularly shaped, and often tightly sandwiched between buildings, roads, and parking lots, they do not significantly contribute to the open space at the project site. There are another approximately 17.25 acres of unfenced “yard space” which are composed of the areas between the façades of each building and the adjacent asphalt pathways. Both the “interstitial open space” and unfenced “yard space” areas include existing “courtyard” spaces, which in many cases consist of the yard space in the middle of a “U”-shaped building or the space in between two “U”-shaped buildings facing each other. In addition, there are another 3.5 acres of private yards that were originally either interstitial open space or common open space that have been claimed by individual units as private open space through the use of fencing. There are also an additional 8.2 acres of asphalt-covered surface parking lots.

e. Libraries

The City of Los Angeles Public Library (LAPL) system provides library services to the City of Los Angeles. The Robert Louis Stevenson Branch Library, located at 803 Spence Street. The Robert Louis Stevenson Branch Library is comprised of a

\(^{23}\) Written communication, Jon Kirk Mukri and Michael Shull, City of Los Angeles Department of Recreation and Parks, July 18, 2008.
6,000-square-foot facility, with a collection of 32,150 volumes and nine staff positions. Based on the most recent information provided by the LAPL, the branch had an estimated service population of 31,792 residents in 2005 and is expected to grow to 32,740 residents by 2010. Other nearby LAPL branch libraries include the Benjamin Franklin Branch Library, located approximately 1.17 miles north of the project site; the Malabar Branch Library is located approximately 1.93 miles to the northeast; and the Little Tokyo Branch Library, located approximately 2.08 miles northwest of the project site.

11. Traffic, Access, and Parking

Primary regional access to the project vicinity is provided by the Santa Monica Freeway (I-10), the Hollywood Freeway (US-101), the Golden State Highway/Santa Ana Freeway (I-5), and the Pomona Freeway (SR 60). Local streets provide regional and local access in the area. East/West arterials include Whittier Boulevard, 7th Street, 8th Street, Olympic Boulevard, and Washington Boulevard. North/South Arterials include Boyle Avenue, Soto Street, Marietta Street, Euclid Avenue, and Lorena Street.

The study area defined for purposes of the project traffic analysis is served by three local transit agencies in the form of local and express bus service. Metro, Montebello Bus Lines, and the El Sol shuttle provide public transit service to the study area. The Metro bus system provides 13 bus lines in the form of both rapid and local bus service in the study area; Montebello Bus Lines operates three lines, and El Sol provides one shuttle.

Vehicular access to the project site is currently provided at the following eight points: Glenn Avenue, Camulos Place, and Rosalind Place from 8th Street; Hostetter Street from Soto Street; Lydia Drive from Grande Vista Avenue; and Orme Avenue, Camulos Street, and Dacotah Street from Olympic Boulevard.

Pedestrian facilities in the study area include sidewalks, pedestrian signals at signalized intersections, and crosswalks. Striped crosswalks are provided at most of the signalized study intersections.

Currently, parking on the project site is provided in three forms: garage spaces, surface parking lot spaces, and on-street parking spaces along internal streets. A total of 502 parking spaces are provided in existing garage parking. Approximately 586 spaces are provided in surface parking lots, and approximately 711 parking spaces are provided on internal streets. A total of approximately 1,799 parking spaces are currently provided on the project site.
As further discussed in Section IV.K, Traffic, Access, and Parking, of this Draft EIR, 63 of the 75 analyzed signalized intersections in the project traffic analysis currently operate at an acceptable level of service (LOS) D or better during both peak periods. Twelve signalized intersections are currently operating at LOS E or F (unacceptable levels) during one or both of the A.M. and P.M. peak periods. Five of the nine unsignalized intersections currently operate at an acceptable LOS, while four unsignalized intersections are currently operating at LOS E or F (unacceptable levels) during one or both of the A.M. and P.M. peak periods.

12. Utilities and Service Systems

a. Water Supply

The LADWP is responsible for providing water within the City of Los Angeles limits and ensuring that water quality meets applicable California health standards for drinking water. As the project site is located within the City, LADWP is the water provider for the project. Water is supplied to the City from four primary sources: the Los Angeles Aqueducts (LAA), local groundwater, the Metropolitan Water District (MWD), and recycled water. In 2009, LADWP had an available water supply of 561,306 acre-feet (AF), of which approximately 24.4 percent of LADWP’s water supply was from the LAA, approximately 11.6 percent from local groundwater, approximately 63.2 percent from the MWD, and approximately 1.3 percent from recycled water. Additionally, less than 1 percent was taken and stored in the reservoir system.

Based on use of LADWP water use rates, the existing uses on the project site result in an existing water demand of approximately 300,500 gallons per day (gpd) or 337 acre-feet per year (AFY). In addition, analysis of the existing project’s LADWP billing records for 2006, 2007, and 2008 indicate that the current average day demand for the project site is 393,945 gpd. The difference in the existing water use relative to the water use calculated using LADWP factors is likely attributable to the existing occupancy of the residential units, which is higher than average occupancies in the City of Los Angeles.

The project site is currently served by an existing public water distribution system that is owned by the LADWP. The pipe network for the distribution system is located within the public streets that surround and travel through the project site. The existing off-site water distribution network varies from 8-inch to 12-inch pipes. To the north, an 8-inch pipe exists within 8th Street. To the east, an 8-inch and 12-inch pipe exists within Grande Vista Avenue and Dacotah Street, respectively. To the south, an 8-inch pipe is located with Olympic Boulevard and to the west, a 12-inch pipe is located within Soto Street. Within the project site, the water distribution network varies from 6-inch to 12-inch pipes. The major
on-site water main is a 12-inch pipe in Glenn Avenue which connects to the 8-inch pipe in 8th Street and the 12-inch pipe in Dacotah Street. There is also a 6-inch pipe in Camulos Place, a 6-inch pipe in Rosalind Drive, an 8-inch pipe in Lydia Drive, a 6-inch pipe in Orme Avenue and an 8-inch pipe in Camulos Street.

b. Wastewater

The City of Los Angeles operates and maintains the largest wastewater collection system in the United States. The existing wastewater collection system includes more than 6,500 miles of public sewers and 48 pumping stations, serves a population of more than four million, and conveys approximately 400 million gallons of wastewater per day to the City's four wastewater treatment and water reclamation plants. The project site is served by the Hyperion Sanitary Sewer System, operated by LADPW. Wastewater generated within the project area is conveyed to and treated at the Hyperion Treatment Plant (HTP), located in Playa Del Rey. HTP serves the entire City of Los Angeles (except the Harbor Area) and areas within other jurisdictions outside the City of Los Angeles, which cover a total of 600 square miles.

Existing development within the project site is served by local collection sewer lines generally consisting of 8-inch clay pipes and located within the public streets. Of the 1,187 dwelling units currently located on-site, 934 units (and other ancillary uses) located within the central and western areas of the site drain to a 16- to 21-inch diameter clay pipe trunk sewer in Glenn Avenue and a 15- to 18-inch diameter clay pipe trunk sewer that follows the vacated Camulos Street alignment, while 253 units within the eastern portion of the site (east of Rosalind Place) are served by a line in 8th Street that drains to Sewer Pump Plant No. 606, which serves the off-site residential area located north of 8th Street and the eastern portion of the project site.

Based on LADPW Bureau of Engineering wastewater generation factors, the on-site uses are estimated to generate an average of approximately 218,250 gpd of wastewater, with a peak flow of 638,936 gpd. Based on the calculated average wastewater flows generated on-site, an estimated 172,189 gpd drain to the 30-inch Camulos trunk sewer, while 46,061 gpd drain to Sewer Pump Plant No. 606. The Bureau of Engineering has indicated that increases to the Camulos line from the project site beyond what is currently emitted from the project site are prohibited due to downstream constraints.

c. Solid Waste

Landfills within Los Angeles County are generally classified either as Class III landfills, which accept non-hazardous solid waste, or unclassified (inert) landfills, which accept construction and demolition waste, yard trimmings, and earth-like waste. Twelve Class III landfills and three unclassified landfills are located within the County. In 2009, approximately 6.866 million tons of solid waste was disposed of at County Class III landfills, while approximately 0.176 million tons of inert wastes was disposed of at the County’s unclassified landfills. The remaining disposal capacity that is open to the City of Los Angeles within the County’s Class III landfills is estimated at 108.378 million tons, whereas the remaining disposal capacity that is open to the City of Los Angeles within the unclassified landfills serving the County is estimated at approximately 55.799 million tons.

The City of Los Angeles Bureau of Sanitation annually collects approximately 1.4 million tons of refuse from single and small multi-family residences, as well as approximately 190,000 tons of recyclables and 480,000 tons of yard trimmings in the City. In general, the Bureau of Sanitation provides waste collection services for single-family and some smaller multi-family developments while private haulers provide waste collection services for most multi-family residential and commercial developments. Solid waste collected by the City and private haulers is either recycled, reused, transformed at a waste-to-energy facility or disposed of at a landfill.

The project site is currently developed with 1,187 residential units which currently generate solid waste. Based on a residential solid waste generation factor of 12.23 pounds per household per day, as set forth in the City of Los Angeles CEQA Thresholds Guide, it is estimated that these existing uses generate approximately 2,649 tons of solid waste per year. There is no recycling program currently in place within the site.

25 County of Los Angeles, Department of Public Works; Los Angeles County Integrated Waste Management Plan 2009 Annual Report, February 2011. With the Bradley Landfill closure in April 2007 and the Sunshine Canyon City and Sunshine Canyon County landfills combining in 2008, there are currently 11 operational Class III landfills in Los Angeles County.

III. Environmental Setting

B. Related Projects

The California Environmental Quality Act (CEQA) requires that Environmental Impact Reports (EIRs) analyze cumulative impacts. CEQA Guidelines Section 15355 defines cumulative impacts as “two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts.” In addition, CEQA Guidelines Section 15130(b) indicates that the analysis of cumulative impacts need not be as in-depth as what is provided relative to the proposed project, but instead is to “be guided by the standards of practicality and reasonableness.”

Cumulative impacts are anticipated impacts of the project along with reasonably foreseeable growth. According to CEQA Guidelines Section 15130(b)(1), reasonably foreseeable growth may be based on either of the following:

- A list of past, present, and probable future projects producing related or cumulative impacts including, if necessary, those projects outside the control of the agency; or

- A summary of projections contained in an adopted general plan or related planning document, or in a prior environmental planning document which has been adopted or certified, which described or evaluated regional or area-wide conditions contributing to the cumulative impact.

Cumulative study areas are defined based on an analysis of the geographical scope relevant to each particular environmental issue. Therefore, the cumulative study area for each individual environmental impact issue may vary. For example, a cumulative land use impact generally could only affect the compatibility of uses within the vicinity of the project site, while a cumulative air quality impact could affect the entire South Coast Air Basin. The specific boundaries and the projected growth within those boundaries for the cumulative study area of each environmental issue, are identified in the applicable environmental issue section in Section IV, Environmental Impact Analysis, of this Draft EIR.

In addition, 37 related projects have been identified within the vicinity of the project site. These related projects are identified in Table III-1 on page III-24 and are located on the map presented in Figure III-1 on page III-26. This list of related projects has been compiled from a number of sources, including Los Angeles Department of Transportation (LADOT) staff, County of Los Angeles staff, City of Vernon staff, City of Commerce staff, and City of Maywood staff. Based on an analysis of the related project’s growth (in terms of population,
Table III-1

Related Projects Trip Generation

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Name</th>
<th>Address</th>
<th>Jurisdiction</th>
<th>ZIP Code</th>
<th>Description</th>
<th>Size</th>
<th>Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central Ave Mixed-Use</td>
<td>2000 S. Central Ave. at 20th St.</td>
<td>City of Los Angeles</td>
<td>90011</td>
<td>Apartments, Neighborhood Market and Retail Space</td>
<td>93.00 DU</td>
<td>299</td>
</tr>
<tr>
<td>2*</td>
<td>LAUSD ELA High School #1</td>
<td>1201 E. 1st St. at Mission Rd.</td>
<td>City of Los Angeles</td>
<td>90033</td>
<td>High School</td>
<td>1,026.00</td>
<td>1,754</td>
</tr>
<tr>
<td>3*</td>
<td>Fast-Food Restaurant with Drive-Thru</td>
<td>425 S. Soto St. at 4th St.</td>
<td>City of Los Angeles</td>
<td>90033</td>
<td>Fast-Food Restaurant with Drive-Thru</td>
<td>2.51 KSF</td>
<td>1,244</td>
</tr>
<tr>
<td>4*</td>
<td>Oscar de La Hoya Charter School</td>
<td>1102 S. Lorena St. at Beswick St.</td>
<td>City of Los Angeles</td>
<td>90023</td>
<td>Construct 120-Student Charter High School—251 daily, 137 a.m., 21 p.m. (formerly from EAF construct 520 student high school)</td>
<td>120.00</td>
<td>215</td>
</tr>
<tr>
<td>5*</td>
<td>Prop O & F Public Safety Civic Ctr Facility Plan (EOC)</td>
<td>Temple St. at Vignes St.</td>
<td>City of Los Angeles</td>
<td>90012</td>
<td>Construct 82K SF EOC-POC-FDC, 210-Space Parking Structure & 30SF Medical Services Division Facility</td>
<td>Multiple Sizes</td>
<td>2,221</td>
</tr>
<tr>
<td>6*</td>
<td>Bar/Lounge</td>
<td>701 E. 3rd St. at Alameda St.</td>
<td>City of Los Angeles</td>
<td>90033</td>
<td>Bar/Lounge</td>
<td>8.77 KSF</td>
<td>789</td>
</tr>
<tr>
<td>7</td>
<td>Hollenbeck Police Station</td>
<td>2111 E. 1st St. at St. Louis St.</td>
<td>City of Los Angeles</td>
<td>90011</td>
<td>Police Station (replacement for 54K SF existing)</td>
<td>52.00 KSF</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>LAUSD—Central Reg Middle School #7</td>
<td>Compton Ave. at Adams Blvd.</td>
<td>City of Los Angeles</td>
<td>90011</td>
<td>Middle School</td>
<td>1,350.00</td>
<td>2,187</td>
</tr>
<tr>
<td>9</td>
<td>Police HQ Facility Plan (Also Street Parking Facility)</td>
<td>1st St. at Judge John Aiso St.</td>
<td>City of Los Angeles</td>
<td>90012</td>
<td>Construct 300-Space Public Parking Garage (trips are total for whole PHF project)</td>
<td>300.00 Spaces</td>
<td>3,342</td>
</tr>
<tr>
<td>10*</td>
<td>Sears Project (Mixed-Use)</td>
<td>2650 E. Olympic Blvd. at Soto St.</td>
<td>City of Los Angeles</td>
<td>90023</td>
<td>Condos, Apartments, Shopping Center, Office</td>
<td>728.00 DU</td>
<td>2,325</td>
</tr>
<tr>
<td>11*</td>
<td>Mixed-Use Project</td>
<td>2051 E. 7th St. at Santa Fe Ave.</td>
<td>City of Los Angeles</td>
<td>90021</td>
<td>Condos, Retail</td>
<td>182.00 DU</td>
<td>216</td>
</tr>
<tr>
<td>12*</td>
<td>Bus Maintenance & Inspection Facility</td>
<td>454 E. Commercial St. at Hewitt St.</td>
<td>City of Los Angeles</td>
<td>90012</td>
<td>Bus Maintenance & Inspection Facility</td>
<td>2.00 Acres</td>
<td>100</td>
</tr>
<tr>
<td>13*</td>
<td>Wholesale Mart</td>
<td>1016 S. Towne Ave. at 10th St.</td>
<td>City of Los Angeles</td>
<td>90021</td>
<td>Wholesale Mart</td>
<td>78.97 KSF</td>
<td>2,100</td>
</tr>
<tr>
<td>14*</td>
<td>One Santa Fe Project (Mixed-Use)</td>
<td>300 S. Santa Fe Ave. at 3rd St.</td>
<td>City of Los Angeles</td>
<td>90023</td>
<td>Apartments, Live/Work Units, Retail/Restaurant</td>
<td>442.00 DU</td>
<td>1,745</td>
</tr>
<tr>
<td>15*</td>
<td>Mixed-Use Project</td>
<td>905 E. 2nd St. at Garey St.</td>
<td>City of Los Angeles</td>
<td>90012</td>
<td>Condos, Retail</td>
<td>320.00 DU</td>
<td>845</td>
</tr>
<tr>
<td>16</td>
<td>Commercial Condos</td>
<td>800 E. Pico Blvd. at Stanford Ave.</td>
<td>City of Los Angeles</td>
<td>90021</td>
<td>Commercial Condos</td>
<td>131.00 DU</td>
<td>619</td>
</tr>
<tr>
<td>17*</td>
<td>Industrial Park</td>
<td>1005 S. Mateo St. at Sacramento St.</td>
<td>City of Los Angeles</td>
<td>90021</td>
<td>Industrial Park (replacing 33,600 SF existing industrial)</td>
<td>94.66 KSF</td>
<td>426</td>
</tr>
<tr>
<td>18*</td>
<td>Warehouse/Office/Manufacturing</td>
<td>1115 S. Boyle Ave. at Opal St.</td>
<td>City of Los Angeles</td>
<td>90023</td>
<td>Warehouse, Office, Manufacturing</td>
<td>295.00 KSF</td>
<td>642</td>
</tr>
<tr>
<td>19*</td>
<td>East 27th Street Charter School</td>
<td>1655 E. 27th St. at Long Beach Ave.</td>
<td>City of Los Angeles</td>
<td>90011</td>
<td>Charter High School (replacing 49,894 SF manufacturing)</td>
<td>1,120.00</td>
<td>1,725</td>
</tr>
<tr>
<td>20*</td>
<td>Industrial Park Tract Map</td>
<td>1843 E. 41st St. at Alameda St.</td>
<td>City of Los Angeles</td>
<td>90058</td>
<td>Warehouse</td>
<td>643.00 KSF</td>
<td>2,581</td>
</tr>
<tr>
<td>21*</td>
<td>Lorena Apartments</td>
<td>625 S. Lorena St. at Sabina St.</td>
<td>City of Los Angeles</td>
<td>90023</td>
<td>Apartments, replacing 6,202 SF church & 4 apts</td>
<td>112.00 DU</td>
<td>594</td>
</tr>
<tr>
<td>22*</td>
<td>Commercial (Light Manufacturing) Condos</td>
<td>800 E. 12th St. at Stanford Ave.</td>
<td>City of Los Angeles</td>
<td>90021</td>
<td>Light manufacturing condos (Demo 1,458 SF restaurant & 23,488 SF warehouse)</td>
<td>320.50 KSF</td>
<td>962</td>
</tr>
<tr>
<td>23*</td>
<td>Little Tokyo Block 8 Mixed-Use</td>
<td>200 S. Los Angeles St. at 2nd St.</td>
<td>City of Los Angeles</td>
<td>90023</td>
<td>Condos, Apartments, Retail</td>
<td>510.00 DU</td>
<td>1,812</td>
</tr>
</tbody>
</table>

City of Los Angeles

SCH. No. 2008061123 Boyle Heights Mixed-Use Community Project

October 2011
Related Projects Trip Generation

Table III-1 (Continued)

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Name</th>
<th>Address</th>
<th>Jurisdiction</th>
<th>ZIP Code</th>
<th>Description</th>
<th>Size</th>
<th>Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>24*</td>
<td>Affordable Housing</td>
<td>S. San Pedro St. at 6th St.</td>
<td>City of Los Angeles</td>
<td>90013</td>
<td>Apartments</td>
<td>115.00 DU</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>Single-Family Residence</td>
<td>560 S. Indiana St. at Lanfranco St.</td>
<td>East Los Angeles</td>
<td>90063</td>
<td>Development of SFR; existing SFR on lot to remain</td>
<td>1.00 DU</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>Warehouse</td>
<td>4422 Dunham St. at Sunol Dr.</td>
<td>East Los Angeles</td>
<td>90023</td>
<td>Second-floor addition of warehouse space</td>
<td>18.20 KSF</td>
<td>90</td>
</tr>
<tr>
<td>27*</td>
<td>Middle School</td>
<td>2800–2814 E. Whittier Blvd. at Camulos St.</td>
<td>City of Los Angeles</td>
<td>90023</td>
<td>Grades 5–8, 360 students, charter school</td>
<td>360.00 Students</td>
<td>583</td>
</tr>
<tr>
<td>28*</td>
<td>Live/Work Lofts</td>
<td>837–859 Traction Ave. at Avery St.</td>
<td>City of Los Angeles</td>
<td>90013</td>
<td>Live/Work Lofts</td>
<td>18.00 DU</td>
<td>121</td>
</tr>
<tr>
<td>29*</td>
<td>Mixed-Use Project</td>
<td>814–828 E. Traction Ave. at Avery St.</td>
<td>City of Los Angeles</td>
<td>90013</td>
<td>Live/Work Lofts/Kitchen</td>
<td>76.00 DU</td>
<td>511</td>
</tr>
<tr>
<td>30*</td>
<td>Mixed-Use/Senior Housing</td>
<td>3965 E. Olympic Blvd. at Ditman Ave.</td>
<td>East Los Angeles</td>
<td>90023</td>
<td>Apartments/Office/Condo</td>
<td>125.00 DU</td>
<td>846</td>
</tr>
<tr>
<td>31</td>
<td>Senior Housing</td>
<td>219 S. Dangler Ave. at Eugene St.</td>
<td>East Los Angeles</td>
<td>90022</td>
<td>Apartments</td>
<td>34.00 DU</td>
<td>228</td>
</tr>
<tr>
<td>32</td>
<td>C.R. Lawrence</td>
<td>4300 Santa Fe Ave. at Vernon Ave.</td>
<td>City of Vernon</td>
<td>90058</td>
<td>Warehouse Facility</td>
<td>70 KSF</td>
<td>347</td>
</tr>
<tr>
<td>33</td>
<td>L.A. Wash Rack</td>
<td>4317 Downey Rd. at Vernon Ave.</td>
<td>City of Vernon</td>
<td>90058</td>
<td>New Tanker Maintenance Building, New 3-bay Tanker Truck Wash</td>
<td>N/A</td>
<td>20</td>
</tr>
<tr>
<td>34*</td>
<td>Pechiney Site (Power Plant)</td>
<td>3200 Fruitland Ave. at Solo St.</td>
<td>City of Vernon</td>
<td>90058</td>
<td>Power Plant</td>
<td>20 Acres</td>
<td>778</td>
</tr>
<tr>
<td>35</td>
<td>Smurfit Site</td>
<td>2200 55th St. & 2001 57th St. w/o Santa Fe Ave.</td>
<td>City of Vernon</td>
<td>90058</td>
<td>Industrial/Manufacturing</td>
<td>10 Acres</td>
<td>389</td>
</tr>
<tr>
<td>36</td>
<td>Thermador Site</td>
<td>5119 District Blvd. at Atlantic Blvd.</td>
<td>City of Vernon</td>
<td>90040</td>
<td>Fire Station/Cover</td>
<td>10 Acres</td>
<td>389</td>
</tr>
<tr>
<td>37</td>
<td>Mars Petcare/Kal Kan Site</td>
<td>3250, 3316, 3344, 3376 44th St. w/o Boyle Ave.</td>
<td>City of Vernon</td>
<td>90058</td>
<td>Industrial/Manufacturing</td>
<td>18 Acres</td>
<td>700</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55,153</td>
</tr>
</tbody>
</table>

*Growth from these related projects is not within SCAG’s regional growth forecast for 2030.

Projects 1, 3-4, 6-7, 10-11, 13-22, 24: Daily, AM and PM total trips provided by LADOT, April-May, 2008. In/out splits from ITE Trip Generation, 7th Edition.

Project 2, 8: AM total trips provided by LADOT, April-May, 2008. Daily, PM Total, and In/out splits from ITE Trip Generation, 7th Edition.

Project 5: Traffic and Parking Study for the Public Safety Facilities Master Plan, Fehr & Peers, 11/1/04

Project 9: Traffic and Parking Study for the Police Headquarters Facility Plan, Fehr & Peers, 10/1/05

Project 12: Memorandum--Proposed Downtown Bus Maintenance and Inspection Facility, Fehr & Peers, 12/1/05

Project 23: Traffic and Parking Study for the Little Tokyo Block & Mixed Use Development, Fehr & Peers, 5/1/05

Projects 32-37: Data provided by City of Vernon staff on June 9, 2009.

Hollenbeck Police Station: PM trips are negative because new use generates fewer trips than previous use.

Staff for the Cities of Maywood and Commerce were contacted, and it was determined that there were no related projects in those jurisdictions, or related projects were beyond a 2-mile radius from the project site.

Figure III-1
Location of Related Projects

LEGEND
- Project Site
- Related Project Location

Boyle Heights Mixed-Use Community Project
housing, and employment) in comparison with the SCAG’s 2030 growth forecasts by SCAG’s Traffic Analysis Zones (TAZs), the growth associated with 11 of these 37 related projects was determined to be within SCAG’s 2030 growth forecast. However, growth associated with 26 of the related projects (indicated by asterisks in Table III-1) is not within the SCAG forecast. Accordingly, these related projects are addressed separately in the cumulative analyses in this Draft EIR where appropriate.