CHAPTER 4
Alternatives Analysis

4.1 Introduction and Overview

According to CEQA, an EIR must describe a reasonable range of alternatives to a proposed project that could feasibly attain most of the basic project objectives, and would avoid or substantially lessen any of the proposed project’s significant effects. Additionally, a “No Project” alternative must be analyzed. An EIR must evaluate the comparative merits of the alternatives.

The range of alternatives in an EIR is governed by a “rule of reason” that requires an EIR to set forth only those alternatives necessary to permit a reason choice. An EIR need not consider every conceivable alternative to a project. Rather, the alternatives must be limited to ones that meet the project objectives, are feasible, and would avoid or substantially lessen at least one of the significant environmental effects of the project. “Feasible” means capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, legal, social and technological factors.

The EIR must briefly describe the rationale for selection and rejection of alternatives and the information the Lead Agency relied on when making the selection. It also should identify any alternatives considered, but rejected as infeasible by the lead agency during the scoping process and briefly explain the reasons for the exclusion. Alternatives may be eliminated from detailed consideration in the EIR if they fail to meet most of the project objectives, are infeasible, or do not avoid any significant environmental effects.

This chapter identifies two alternatives that attain some of the project objectives, are feasible, and could avoid or lessen environmental impacts, including the No Project Alternative. This chapter concludes by analyzing the environmentally superior alternative.

4.2 Project Objectives

As discussed in Chapter 2, Project Description, the project objectives are:

- To remodel, reconfigure, remove, or replace dysfunctional buildings or buildings that do not support the character, scale, quality, function, or safety of the campus because they are badly located, poorly designed, or are functionally and physically outmoded. Projects could include the restoration and rehabilitation of existing buildings, construction of new
4. Alternatives Analysis

buildings, creation of well-defined open space, landscape, transportation and/or utility projects, as necessary.

- To incorporate sustainable design features into new development and to meet the standards of the U.S. Green Building Council’s Energy and Environmental Design Green Building Rating System for New Construction and Major Renovations (LEED-NC).

- To permit, encourage and facilitate the preservation, renovation, and ongoing maintenance of historically and architecturally significant buildings.

- Provide regulatory controls and incentives for the systematic execution of the relevant portions of the Northeast Los Angeles Community Plan, and to provide for public needs, convenience, and general welfare as the development of such area necessitates.

- Provide sufficient parking to serve the demonstrated need and demand for parking at Occidental College without development of excessive or unnecessary parking on the campus.

- Enhance the existing pedestrian-friendly campus environment, while at the same time, improve pedestrian accessibility on the campus to discourage excessive automobile trips and parking in residential areas.

- Establish development criteria to lessen the visual impacts of building masses and hardscape to create an aesthetically pleasing built environment with the effective use of open space, landscaping, landscaped setbacks, buffering and screening.

- Limit the impacts of development on nearby residential areas.

- Develop criteria that promote a consistent architectural form on Occidental College that reinforces the styles of the original Myron Hunt design.

- Develop well-defined landscaped areas throughout the Occidental College campus; and

- Permit the development of on-campus faculty and student housing.

4.3 Alternatives Eliminated from Further Consideration

An EIR must briefly describe the rationale for selection and rejection of alternatives. The Lead Agency may make an initial determination as to which alternatives are potentially feasible and, therefore, merit in-depth consideration, and which are clearly infeasible. Alternatives that are remote or speculative, or the effects of which cannot be reasonably predicted, need not be considered (CEQA Guidelines, Section 15126.6(f)(3)). This section identifies alternatives considered by the Lead Agency, but rejected as infeasible, and provides a brief explanation of the reasons for their exclusion. As noted above, alternatives may be eliminated from detailed consideration in the EIR if they fail to meet most of the project objectives, are infeasible, or do not avoid any significant environmental effects (CEQA Guidelines, Section 15126.6(c)).
4. Alternatives Analysis

4.4 Alternatives to the Proposed Project

An EIR is required to evaluate and analyze the impacts of a No Project Alternative. The purpose of evaluating the No Project Alternative is to allow decision-makers to compare the impacts of approving the project with the impacts of not approving the project. However, the No Project Alternative is not the baseline for determining whether the proposed project’s impacts are significant, unless it is identical to the existing environmental setting analysis that establishes the baseline (CEQA Guidelines, Section 15126.6(e)(1)).

The No Project Alternative analysis must discuss the existing conditions and what would be reasonably expected to occur in the foreseeable future if the project were not approved based on current plans and/or available infrastructure and community services (CEQA Guidelines, Section 15126.6(e)(2)).

The discussion of the No Project Alternative normally proceeds along two lines. When the project is the revision of an existing land use or regulatory plan, policy, or ongoing operation, the No Project Alternative will be the continuation of the plan, policy, or operation into the future. On the other hand, if the project is an individual development project on an identifiable location, the No Project Alternative compares the environmental effects of the property remaining in its existing state. However, if other future uses of the land are predictable, such uses also should be discussed as possible and the project should be compared to those uses (CEQA Guidelines, Section 15126.6(e)(3)). Therefore, the No Project/No Build Alternative evaluates what could happen at the project site were no development to take place. Alternative 2 evaluates what could happen at the project site if less additional development were to take place.

4.4.1 Alternative 1: No Project/No Build

The current site conditions are described in Chapter 2, Project Description, and throughout the environmental analysis provided in this EIR. Pursuant to the No Project/No Build Alternative, the development proposed as part of the project would not be constructed and the project site would remain as a college campus composed of 1,148,044 square feet of building area. None of the existing 390 parking spaces would be removed, and no additional development of 550,250 square feet would occur. The buildings, some of which are potentially historic, on the project site are currently old; the site is underdeveloped and would continue to be underused in the absence of an approved development and redevelopment program. However, the number of students could still
increase from the current 1,750 up to the cap of 2,000. As a result, there is some potential for overcrowding, an increase in traffic, and the continued use of inefficient buildings.

Environmental Impact

Aesthetics: Under the No Project/No Build Alternative, the buildings at the project site would remain un-restored and underutilized. No elements would be introduced under this alternative that would change the existing aesthetic character. No significant impact would occur; However, degradation of the existing facility is considered unsatisfactory.

Air Quality: Under the No Project/No Build Alternative, air pollution emissions are tied primarily to traffic volumes. Since there would be no construction or development with this alternative, there would be no increase in traffic volumes associated with this alternative except with increase in student population over time to cap of 2,000. As such, air emissions in the vicinity would not increase substantially. No impact would occur.

Biological Resources: The No Project/No Build Alternative would not change existing landscaping at the project site. As such, no trees or other biological resources would be removed from the site or relocated on-site. No impact to biological resources would occur.

Cultural Resources: There are several potentially significant historic resources or structures on the project site. Under the No Project/No Build Alternative, most existing structures are underutilized and would remain intact and therefore would not likely be restored and reused. Potentially historic buildings would not necessarily be repaired or restored to the Secretary of the Interior’s standards. However, impacts to these historical resources could be less as compared with the proposed project because no substantial changes would be made to the buildings. With regard to archaeological and paleontological resources, the No Project/No Build Alternative would not involve excavation and grading activities that could potentially disturb such resources. Therefore, no impacts to archaeological and paleontological resources would occur, and impacts would be less than the proposed project.

Geology/Soils: The No Project/No Build Alternative would not involve excavation and/or grading activities. As such, impacts related to unstable soils would not occur, and impacts would be less than the project.

Under the No Project/No Build Alternative, no changes to the existing development on the project site would occur. Currently, buildings on the project site are exposed to a degree of seismic risks and depending on their age, may not meet the latest seismic standards of the California Building Code. However, since the No Project/No Build Alternative would not result in an increase in the on-site population, no additional exposure of people and structures to seismic risks would occur. Impacts related to ground shaking would be considered to be less than significant, but without seismic retrofitting, the impact could be considered slightly greater than impacts resulting from the proposed project.

Hydrology/Water Quality: Under the No Project/No Build Alternative, there would be no new construction activities (apart from normal maintenance and operations) and no new land uses.
Thus, the water quality impacts resulting from construction activities (e.g., grading, dewatering) and new point and non-point source discharges from the proposed project operations would not occur. Therefore, water quality impacts under the No Project/No Build Alternative would be less than the project.

Implementation of the No Project/No Build Alternative would not result in modifications to the existing development. Therefore, stormwater runoff drainage patterns and volumes would remain unchanged from existing conditions. No new impacts due to flooding or stormwater runoff would occur, and impacts would be less than significant when compared to the project.

Land Use and Planning: The No Project/No Build Alternative would not change the existing land use and would continue current development patterns on the proposed project site. The No Project/No Build Alternative would not conflict with an applicable land use plan, policy, or regulation. No significant impact would occur to land use.

Noise: Existing ambient noise levels would continue under this alternative. No construction noise would be generated because this alternative assumes that no new construction would occur outside of normal maintenance activities. No significant impact would occur.

Recreation: Under the No Project/No Build Alternative, there would be no construction, renovation or expansion of recreational facilities that would cause an adverse physical effect on the environment. No significant impacts would occur.

Transportation, Circulation and Parking: Implementation of the No Project/No Build Alternative would not result in a significant amount of new vehicle trips. No significant impact to neighborhood streets would occur as could happen with the project.

Overall, the No Project/No Build Alternative would not result in a significant impact. The existing site institutional uses would remain underdeveloped in the absence of an approved development proposal.

Comparison to Project Objectives

The No Project/No Build Alternative would not meet any of the goals and objectives for the proposed project, such as preserving, renovating, and providing ongoing maintenance of potentially historic and architecturally significant buildings; and remodeling, reconfiguring, removing, or replacing dysfunctional buildings or buildings that do not support the character, scale, quality, function, or safety of the campus because they are badly located, poorly designed, or are functionally and physically outmoded.

4.4.2 Alternative 2: Less Dense Alternative

The Less Dense Alternative would reduce proposed project development by 25 percent. Under this alternative, the Specific Plan would result in the net addition of approximately 412,688 net new additional square feet to the existing 1,148,044 square feet of building area instead of 550,250 net new additional square feet proposed under the project.
Environmental Impact

Aesthetics: Under the Less Dense Alternative, the project site would retain the same general configuration as proposed by the project. The Less Dense Alternative would generally have a similar visual character (articulated building design) as the project site resulting in aesthetic impacts similar to the proposed project. This alternative would not substantially degrade the visual character of the site and its surroundings. As with the proposed project, implementation of Mitigation Measures 3A.1 through 3A.6 would reduce any potential aesthetic impact to a less than significant level.

Air Quality: Air quality impacts related to construction activities would be similar to the project as the same type and number of construction equipment would be used during peak construction activity. It would be expected that the Less Dense Alternative would generate about 25 percent fewer operational emissions than the proposed project. Air quality impacts would be reduced under this alternative as compared to the proposed project. As with the proposed project, implementation of Mitigation Measures 3B.1 through 3B.4 would reduce ROG, NOx, CO, and PM$_{10}$ construction emissions below SCAQMD thresholds.

Biological Resources: Construction of the Less Dense Alternative would be similar to the proposed project in that it would be necessary to remove and/or relocate on-site trees at or near Building Opportunity Sites; this Alternative could affect nesting bird species and a potential jurisdictional wetland. As with the proposed project, the Less Dense Alternative would be required to adhere to Mitigation Measures 3C.1 through 3C.18, which are the mitigation measures imposed on the proposed project. With the implementation of these measures, the potential impact of the Less Dense Alternative to biological resources would be less than significant.

Cultural Resources: There are known significant historic resources and structures located within the project area. The same mitigation measures proposed for the project would apply for the Less Dense Alternative. With the implementation of Mitigation Measure 3D.1, impacts to historical resources would be less than significant and equivalent to project impacts. With regard to archaeological and paleontological resources, no such resources are known to exist on the project site. Excavation and grading activities would also be necessary under the Less Dense Alternative but would be less than the proposed project to the reduced amount of development. Nonetheless, the Less Dense Alternative would also have the potential to adversely impact previously unrecorded prehistoric archeological resources; with less building square footage and construction activity, the risk of the unanticipated discovery of human remains would be less than the proposed project. With implementation of Mitigation Measures 3D.2 through 3D.4, impacts would be less than significant and would be less than the proposed project.

Geology: The project site is not located within an Alquist-Priolo Fault zone. Therefore, as with the project, the Less Dense Alternative would not result in impacts due to fault rupture. As with the proposed project, all construction for the Less Dense Alternative would meet the latest seismic standards of the California Building Code and comply with Mitigation Measures 3E.1 and 3E.2. With compliance with these building design standards, the potential exposure of persons and/or property to groundshaking under the Less Dense Alternative would be less than significant.
Hydrology/ Water Quality: The Less Dense Alternative would involve construction activities (e.g., grading, and watering) similar to the proposed project and thus, could expose soils to erosion via stormwater runoff water runoff. This Alternative would include features similar to the proposed project and would require mitigation measures to off-set any potential impacts to water quality. As with the proposed project, potential impacts to water quality from increased soil erosion, siltation, or increased surface runoff during construction would be expected to be reduced to a less than significant level with implementation of BMPs. However, in comparison to the project, this Alternative’s reduced development would require less construction activities than the proposed project. As such, water quality impacts during construction would be comparatively less than the proposed project. This alternative would not affect potential student enrollment and therefore demand for water would be as for the project. Water demand from the faculty and staff housing would still occur. Impacts would remain less than significant as for the project.

Land Use and Planning: The Less Dense Alternative would result in the same land uses as those identified for the project. Faculty and staff (multi-family) housing could still be constructed along Townsend and N. Avenue 50, across from single family housing in the R-1 zone. The Less Dense Alternative would be consistent with local land use policies and plans. No significant impact to land uses, plans, or policies would occur.

Noise: Noise impacts related to construction activities would be similar to the project as the same type and number of construction equipment would be used during peak construction activity. As with the proposed project, this alternative would not result in significant construction noise and vibration impacts.

The Less Dense Alternative could result in an approximate 25 percent reduction in construction related traffic volumes generated by the project. Traffic generated by the Less Dense Alternative would more or less be the same as under the proposed project because, regardless of the size of the project, additional students could be expected to attend the College up to a maximum cap of 2,000 students. The mobile noise impact associated with this alternative would also be less than the proposed project. As with the proposed project, no impact would occur. The Less Dense Alternative would include the same stationary noise sources as those identified for the proposed project and stationary noise levels would be similar to the proposed project. No significant impacts related to stationary sources would occur. As with the proposed project, implementation of Mitigation Measures 3H.1 through 3H.7, would reduce any potential significant impact from noise.

Recreation: The Less Dense Alternative would reduce the amount of construction, expansion, or reconstruction of recreational facilities on the proposed project site. As with the proposed project, less than significant impacts would occur.

Transportation, Circulation and Parking: Implementation of the Less Dense Alternative would result in 25 percent less development than the proposed project. Because traffic impacts are related to the student body size (which is not anticipated to change substantially) traffic impacts of this alternative would be similar to the project. As with the proposed project, with implementation of Mitigation Measures 3J.4 and 3J.5, potentially significant impacts along Townsend Avenue would be less than significant. As with the proposed project, less than
significant impacts would result from parking impacts with implementation of Measures 3J.1 through 3J.3. Under this alternative while parking may still occur on BOS 28, the number of spaces on BOS 28 would be reduced to ensure no neighborhood street impact.

Comparison to Project Objectives

The Less Dense Alternative would meet most of the project objectives; however, because of the reduced development, some objectives may not be fully realized because of the reduced amount of new development that could occur. The Less Dense Alternative would not satisfy all or part of the following project objectives:

- To remodel, reconfigure, remove, or replace dysfunctional buildings or buildings that do not support the character, scale, quality, function, or safety of the campus because they are badly located, poorly designed, or are functionally and physically outmoded. Projects could include the restoration and rehabilitation of existing buildings, construction of new buildings, creation of well-defined open space, landscape, transportation and/or utility projects, as necessary.

- To incorporate sustainable design features into new development and to meet the standards of the U.S. Green Building Council’s Energy and Environmental Design Green Building Rating System for New Construction and Major Renovations (LEED-NC).

- Permit the development of on-campus faculty and student housing. The Less Dense Alternative would reduce proposed project development by 25 percent. As a result, the opportunities to remodel, reconfigure, remove or replace dysfunctional or undesirable buildings with new construction, including the development of on-campus housing, would be limited when compared with the proposed project.

The Less Dense Alternative would satisfy all or part of the following project objectives:

- To permit, encourage and facilitate the preservation, renovation, and ongoing maintenance of historically and architecturally significant buildings.

- Provide regulatory controls and incentives for the systematic execution of the relevant portions of the Northeast Los Angeles Community Plan, and to provide for public needs, convenience, and general welfare as the development of such area necessitates.

- Provide sufficient parking to serve the demonstrated need and demand for parking at Occidental College without development of excessive or unnecessary parking on the campus.

- Enhance the existing pedestrian-friendly campus environment, while at the same time, improve pedestrian accessibility on the campus to discourage excessive automobile trips and parking in residential areas.

- Establish development criteria to lessen the visual impacts of building masses and hardscape to create an aesthetically pleasing built environment with the effective use of open space, landscaping, landscaped setbacks, buffering and screening.
4. Alternatives Analysis

- Limit the impacts of development on nearby residential areas.
- Develop criteria that promote a consistent architectural form on Occidental College that reinforces the styles of the original Myron Hunt design.
- Develop well-defined landscaped areas throughout the Occidental College campus.

4.4.3 Alternative 3: No Development in Sub Area 3 Alternative

The No Development in Sub Area 3 Alternative would eliminate development on Building opportunity Sites 1 through 6. While no significant impacts are anticipated as a result of development on these sites, this alternative explores the concept of no development in Sub Area 3 as has been alluded to by community members. No development would occur along Townsend Avenue, or N. Avenue 50. No pavilion would be developed on Fuji Hill. Under this alternative, the Specific Plan could still result in the same net addition of approximately 550,250 net new additional square feet to the existing 1,148,044 square feet of building area as under the proposed under the project. However, new development and changes to the campus would not occur in Sub Area 3.

Environmental Impact

Aesthetics: Under the No Development in Sub Area 3 Alternative, the project site would retain a similar general configuration as proposed by the project except without development of BOS 1 through 6. The No Development in Sub Area 3 Alternative would have the same visual character (articulated building design) as the project in Sub Areas 1 and 2 resulting in aesthetic impacts similar to the proposed project in those areas. There would be no aesthetic impacts on Sub Area 3. This alternative would not substantially degrade the visual character of the site and its surroundings. As with the proposed project, implementation of Mitigation Measures 3A.1 through 3A.4 and 3A.6 would reduce any potential aesthetic impact to a less than significant level.

Air Quality: Air quality impacts related to construction activities would be similar to the project as the same type and number of construction equipment would be used during peak construction activity. It would be expected that the No Development in Sub Area 3 Alternative would generate the same emissions as the proposed project. Air quality impacts would be the same as compared to the proposed project since the amount of new development would be the same. As with the proposed project, implementation of Mitigation Measures 3B.1 through 3B.4 would reduce ROG, NOx, CO, and PM10 construction emissions below SCAQMD thresholds.

Biological Resources: Construction of the No Development in Sub Area 3 Alternative would be similar to the proposed project in that it would be necessary to remove and/or relocate on-site trees at or near Building Opportunity Sites; this Alternative could affect nesting bird species. It would not affect the potential jurisdictional wetland. As with the proposed project, the Less Dense Alternative would be required to adhere to Mitigation Measures 3C.1 through 3C.18.
(except that 3C.7 and 8 would not be necessary as no development would occur in Sub Area 3), which are the mitigation measures imposed on the proposed project. With the implementation of these measures, the potential impact of the Less Dense Alternative to biological resources would be less than significant.

Cultural Resources: There are known significant historic resources and structures located within the project area. The same mitigation measures proposed for the project would likely apply for the Less Dense Alternative. With the implementation of Mitigation Measure 3D.1, impacts to historical resources would be less than significant and/or equivalent to project impacts. With regard to archaeological and paleontological resources, no such resources are known to exist on the project site. Excavation and grading activities would also be necessary under the Less Dense Alternative but would be less than the proposed project to the reduced amount of development. Nonetheless, the No Development in Sub Area 3 Alternative would also have the potential to adversely impact previously unrecorded prehistoric archeological resources; with less building square footage and construction activity, the risk of the unanticipated discovery of human remains would be less than the proposed project. With implementation of Mitigation Measures 3D.2 through 3D.4, impacts would be less than significant and would be less than the proposed project.

Geology: The project site is not located within an Alquist-Priolo Fault zone. Therefore, as with the project, the No Development in Sub Area 3 Alternative would not result in impacts due to fault rupture. As with the proposed project, all construction for the No Development in Sub Area 3 Alternative would meet the latest seismic standards of the California Building Code and comply with Mitigation Measures 3E.1 and 3E.2. With compliance with these building design standards, the potential exposure of persons and/or property to groundshaking under the No Development in Sub Area 3 Alternative would be less than significant.

Hydrology/ Water Quality: The No Development in Sub Area 3 Alternative would involve construction activities (e.g., grading, and watering) similar to the proposed project and thus, could expose soils to erosion via stormwater runoff water runoff. This Alternative would include features similar to the proposed project and would require mitigation measures to off-set any potential impacts to water quality. As with the proposed project, potential impacts to water quality from increased soil erosion, siltation, or increased surface runoff during construction would be expected to be similar to the project, except in Sub Area 3 where no development would occur. Water quality impacts during construction would be similar to the proposed project. Demand for water would be similar compared to the proposed project because the number of students would remain the same. The water demand from the approximately 35 faculty/staff housing units would be eliminated.

Land Use and Planning: The No Development in Sub Area 3 Alternative would result in similar land uses as those identified for the project. The No Development in Sub Area 3 Alternative would be consistent with local land use policies and plans. No multi-family housing for faculty and staff would occur across from single family housing on N. Avenue 50. No significant impact to land uses, plans, or policies would occur.

Noise: Noise impacts related to construction activities would be similar to the project as the same type and number of construction equipment would be used during peak construction activity. As
with the proposed project, this alternative would not result in significant construction noise and vibration impacts.

The No Development in Sub Area 3 Alternative could result in similar construction related traffic volumes generated by the project, except there would be no construction traffic in Sub Area 3. Traffic generated by the Less Dense Alternative would be more or less the same as under the proposed project because, regardless of the size of the project, additional students could be expected to attend the College up to a maximum cap of 2,000 students. The mobile noise impact associated with this alternative would also be less than the proposed project. As with the proposed project, no impact would occur. The No Development in Sub Area 3 Alternative would include the same stationary noise sources as those identified for the proposed project and stationary noise levels would be similar to the proposed project. No significant impacts related to stationary sources would occur. As with the proposed project, implementation of Mitigation Measures 3H.1 through 3H.7, would reduce any potential significant impact from noise.

Recreation: The No Development in Sub Area 3 Alternative would reduce the amount of construction, expansion, or reconstruction of recreational facilities on the proposed project site. As with the proposed project, less than significant impacts would occur.

Transportation, Circulation and Parking: Implementation of the No Development in Sub Area 3 Alternative would result in similar development to the proposed project, except that faculty and staff housing would not be developed. Most traffic impacts are related to the student body size (which is not anticipated to change substantially) therefore traffic impacts of this alternative would be similar to the project. Mitigation Measures 3J.4 and 3J.5, would not be needed as no development would occur along Townsend and N. Avenue 50. As with the proposed project, less than significant impacts would result from parking impacts with implementation of Measures 3J.1 through 3J.3. Under this alternative as with the project if 232 parking spaces were developed on BOS 28, significant impacts could occur to neighborhood street impacts. Mitigation measure 3J.6 would eliminate this potential impact.

Comparison to Project Objectives

The No Development in Sub Area 3 Alternative would meet many of the project objectives; however, objectives related to the development of on-campus faculty and staff housing would likely not be met because of the elimination of suitable sites. The No Development in Sub Area 3 Alternative would not satisfy all or part of the following project objectives:

- To remodel, reconfigure, remove, or replace dysfunctional buildings or buildings that do not support the character, scale, quality, function, or safety of the campus because they are badly located, poorly designed, or are functionally and physically outmoded. Projects could include the restoration and rehabilitation of existing buildings, construction of new buildings, creation of well-defined open space, landscape, transportation and/or utility projects, as necessary.
4. Alternatives Analysis

- To incorporate sustainable design features into new development and to meet the standards of the U.S. Green Building Council’s Energy and Environmental Design Green Building Rating System for New Construction and Major Renovations (LEED-NC).

- Permit the development of on-campus faculty and student housing. Due to the elimination of suitable sites that could have otherwise been developed in Subarea 3, opportunities to remodel, reconfigure, remove or replace dysfunctional or undesirable buildings with new construction, including the development of on-campus housing, would be limited when compared with the proposed project. This alternative would eliminate on-campus faculty housing or require that faculty housing be located in another subarea. Subarea 3, however, is the location most suitable for faculty housing because faculty housing is most compatible with the residential uses north of Subarea 3 and would be appropriately separated from student housing.

The Less Dense Alternative would satisfy all or part of the following project objectives:

- To permit, encourage and facilitate the preservation, renovation, and ongoing maintenance of historically and architecturally significant buildings.

- Provide regulatory controls and incentives for the systematic execution of the relevant portions of the Northeast Los Angeles Community Plan, and to provide for public needs, convenience, and general welfare as the development of such area necessitates.

- Provide sufficient parking to serve the demonstrated need and demand for parking at Occidental College without development of excessive or unnecessary parking on the campus.

- Enhance the existing pedestrian-friendly campus environment, while at the same time, improve pedestrian accessibility on the campus to discourage excessive automobile trips and parking in residential areas.

- Establish development criteria to lessen the visual impacts of building masses and hardscape to create an aesthetically pleasing built environment with the effective use of open space, landscaping, landscaped setbacks, buffering and screening.

- Limit the impacts of development on nearby residential areas.

- Develop criteria that promote a consistent architectural form on Occidental College that reinforces the styles of the original Myron Hunt design.

- Develop well-defined landscaped areas throughout the Occidental College campus.

4.5 Environmentally Superior Alternative

The focus of the alternatives analysis is on reducing potentially significant impacts of the proposed project. The proposed project would result in only one potentially significant impact and that would be potential impacts to neighborhood streets as a result of parking on BOS 28.
An EIR must identify the environmentally superior alternative. The No Project Alternative would be environmentally superior to the proposed project on the basis of minimization or avoidance of physical environmental impacts. However, the No Project Alternative does not meet any of the project objectives. In addition, *CEQA Guidelines* (Section 15126.6(c)) require that, if the environmentally superior alternative is the No Project Alternative, the EIR shall also identify an Environmentally Superior Alternative among the other alternatives.

A summary comparison of the potential impacts associated with the alternatives and the proposed project is provided in Table 4-1. Based on this comparison, the Less Dense Alternative would be the environmentally superior alternative, as it would generally have fewer impacts than the project and would be designed to eliminate potential impacts on neighborhood streets that could occur with the project. This alternative would incrementally reduce impacts associated with building density. This alternative would meet most of the objectives of the project, however, because of the reduced amount of new development, not all objectives would be as fully met as under the proposed project.
TABLE 4-1
COMPARISON OF ALTERNATIVES

<table>
<thead>
<tr>
<th>Descriptions</th>
<th>Proposed Project</th>
<th>Alternative 1: No Project/No Build Alternative</th>
<th>Alternative 2: Less Dense Alternative</th>
<th>Alternative 3: No Development in Sub Area 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter views, affect scenic vistas, degrade visual character of project site, create light and glare impacts</td>
<td>Less than significant with mitigation – compatible with development in the area.</td>
<td>No impact – existing views remain.</td>
<td>Similar impact to the project – compatible with development in area.</td>
<td>No impact in Sub Area 3, similar impact to project in Sub Areas 1 and 2</td>
</tr>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction air pollutants</td>
<td>Less than significant.</td>
<td>No impact – no construction activity.</td>
<td>Same impact as project.</td>
<td>Same impact as project.</td>
</tr>
<tr>
<td>Operation emissions</td>
<td>Less than Significant impact – operational emissions below SCAQMD threshold.</td>
<td>No impact – no operational emissions.</td>
<td>Less than significant impact – less impact than project.</td>
<td>Same impact as project.</td>
</tr>
<tr>
<td>Expose sensitive receptors to pollutant concentrations and objectionable odors</td>
<td>No significant impact.</td>
<td>No impact – no traffic will generate CO.</td>
<td>Less impact than project.</td>
<td>Similar impact to project. No development adjacent to sensitive receptors along N. Avenue 50.</td>
</tr>
<tr>
<td>Biological Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse affect on protected trees</td>
<td>Less than significant with mitigation.</td>
<td>No impact – no tree removal.</td>
<td>Similar impact as project, although likely fewer trees impacted.</td>
<td>Similar impact to project, fewer trees would be impacted because of fewer sites.</td>
</tr>
<tr>
<td>Adverse affect on jurisdictional wetlands and nesting bird species</td>
<td>Less than significant with mitigation.</td>
<td>No impact – no tree removal.</td>
<td>Same impact as project.</td>
<td>Similar impact to project, although fewer sites and therefore fewer trees.</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter significance of historical resource, destroy paleontological /archaeological resources, disturb human remains</td>
<td>Less than significant with mitigation.</td>
<td>Less than significant.</td>
<td>Similar impact to the project.</td>
<td>Similar impact to the project.</td>
</tr>
<tr>
<td>Geology/Soils</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expose people and structures to strong seismic groundshaking; be located on unstable geologic unit</td>
<td>Less than significant with mitigation measures incorporated.</td>
<td>Similar impact to the project.</td>
<td>Similar impact to the project.</td>
<td>Similar impact to the project.</td>
</tr>
</tbody>
</table>
TABLE 4-1
COMPARISON OF ALTERNATIVES (CONT.)

<table>
<thead>
<tr>
<th>Descriptions</th>
<th>Proposed Project</th>
<th>Alternative 1: No Project/No Build Alternative</th>
<th>Alternative 2: Less Dense Alternative</th>
<th>Alternative 3: No Development in Sub Area 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptions</td>
<td>Addition of 550,250 square feet of building area to the existing 1,148,044 square feet of building area.</td>
<td>No development.</td>
<td>Addition of 412,688 square feet building area to the existing 1,148,044 square feet of building area.</td>
<td>No development in Sub Area 3; same net addition of area. No faculty or staff housing.</td>
</tr>
<tr>
<td>Hydrology/Water Quality</td>
<td>Alter existing drainage pattern of site, degrade water quality</td>
<td>Less than Significant.</td>
<td>No impact.</td>
<td>Same as proposed project.</td>
</tr>
<tr>
<td>Land Use and Planning</td>
<td>Meets land use regulations</td>
<td>Less than significant – complies with land use regulations.</td>
<td>No impact – no change.</td>
<td>Less impact than the project – complies with land use regulations.</td>
</tr>
<tr>
<td>Noise</td>
<td>Short-term construction noise</td>
<td>Short-term less than significant.</td>
<td>No impact – noise will not be generated from the site.</td>
<td>Similar impact – building construction would potentially create the same short-term noise levels.</td>
</tr>
<tr>
<td></td>
<td>Operation noise levels</td>
<td>Less than significant – neither mobile nor on-site noise would generate a significant impact.</td>
<td>No impact – no new noise will be created on site.</td>
<td>Less than significant.</td>
</tr>
<tr>
<td></td>
<td>Vibration</td>
<td>Less than significant – some vibration created by project construction.</td>
<td>No impact – no construction would occur.</td>
<td>Similar impact - construction vibration the same.</td>
</tr>
<tr>
<td>Recreation</td>
<td>Project will cause adverse physical effect on environment due to expansion and reconstruction of recreational facilities.</td>
<td>Less than significant.</td>
<td>No impact.</td>
<td>Similar impact to proposed project.</td>
</tr>
</tbody>
</table>

TABLE 4-1

COMPARISON OF ALTERNATIVES (CONT.)

<table>
<thead>
<tr>
<th></th>
<th>Proposed Project</th>
<th>Alternative 1: No Project/No Build Alternative</th>
<th>Alternative 2: Less Dense Alternative</th>
<th>Alternative 3: No Development in Sub Area 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additions to existing</td>
<td>Addition of 550,250 square feet of building area to the existing 1,148,044 square feet of building area.</td>
<td>No development.</td>
<td>Addition of 412,688 square feet building area to the existing 1,148,044 square feet of building area.</td>
<td>No development in Sub Area 3; same net addition of area. No faculty or staff housing.</td>
</tr>
<tr>
<td>Transportation, Circulation and Parking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased traffic at intersection</td>
<td>Less than significant.</td>
<td>Less than significant.</td>
<td>Same impact as proposed project.</td>
<td>Similar to proposed project, except potential impacts along Townsend would not occur and mitigation would not be necessary.</td>
</tr>
<tr>
<td>Increased traffic on neighborhood street segments</td>
<td>Less than significant, unless 232 parking spaces are developed at BOS 28, then potentially significant; mitigation could eliminate the impact, but cannot be assured.</td>
<td>No impact.</td>
<td>Less than significant.</td>
<td>Similar to proposed project.</td>
</tr>
<tr>
<td>Parking spaces</td>
<td>Less than significant – no parking impact.</td>
<td>No impact – no parking required.</td>
<td>Similar impact to project – no parking impact.</td>
<td>Similar to proposed project.</td>
</tr>
</tbody>
</table>