GEOTECHNICAL INVESTIGATION

SAN PEDRO AFFORDABLE HOUSING TOWER
PROPOSED MIXED-USE DEVELOPMENT
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA
TRACT: WOLFSKILL ORCHARD TRACT; BLOCK 21;
LOTS 14-16, & 21-31

PREPARED FOR
CHELSEA INVESTMENT CORPORATION
CARLSBAD, CALIFORNIA

PROJECT NO. A9724-06-01
MARCH 7, 2018
Mr. Ron Brockhoff
Chelsea Investment Corporation
5993 Avenida Encinas, Suite 101
Carlsbad, California 92008

Subject: GEOTECHNICAL INVESTIGATION
SAN PEDRO AFFORDABLE HOUSING TOWER
PROPOSED MIXED-USE DEVELOPMENT
600 SOUTH SAN PEDRO STREET, LOS ANGELES, CALIFORNIA
TRACT: WOLFSKILL ORCHARD TRACT; BLOCK 21; lots 14-16 & 21-31

Dear Mr. Brockhoff:

In accordance with your authorization of our proposal dated January 17, 2018, we have performed a geotechnical investigation for the proposed mixed-use development located at 600 South San Pedro Street in the City of Los Angeles, California. The accompanying report presents the findings of our study, and our conclusions and recommendations pertaining to the geotechnical aspects of proposed design and construction. Based on the results of our investigation, it is our opinion that the site can be developed as proposed, provided the recommendations of this report are followed and implemented during design and construction.

If you have any questions regarding this report, or if we may be of further service, please contact the undersigned.

Very truly yours,

GEOCON WEST, INC.

Renee S. Morales
PE 82772

Jelisa Thomas Adams
GE 3092

Susan F. Kirkgard
CEG 1754

(EMAIL)
Addrsee

(3 + CD)
Rocca Development (to be submitted to LADBS Grading)
TABLE OF CONTENTS

1. PURPOSE AND SCOPE ... 1
2. SITE AND PROJECT DESCRIPTION .. 1
3. GEOLOGIC SETTING .. 2
4. SOIL AND GEOLOGIC CONDITIONS .. 2
 4.1 Artificial Fill .. 2
 4.2 Alluvium ... 3
5. GROUNDWATER .. 3
6. GEOLOGIC HAZARDS ... 3
 6.1 Surface Fault Rupture ... 3
 6.2 Seismicity ... 4
 6.3 Seismic Design Criteria .. 5
 6.4 Liquefaction Potential .. 7
 6.5 Slope Stability ... 8
 6.6 Earthquake-Induced Flooding ... 8
 6.7 Tsunamis, Seiches, and Flooding .. 8
 6.8 Oil Fields & Methane Potential ... 8
 6.9 Subsidence .. 9
7. CONCLUSIONS AND RECOMMENDATIONS ... 10
 7.1 General .. 10
 7.2 Soil and Excavation Characteristics ... 13
 7.3 Minimum Resistivity, pH, and Water-Soluble Sulfate .. 14
 7.4 Grading .. 14
 7.5 Controlled Low Strength Material (CLSM) .. 17
 7.6 Shrinkage ... 18
 7.7 Conventional Foundation Design – Parking Structure .. 18
 7.8 Foundation Settlement – Parking Structure ... 19
 7.9 Foundation Design – Tower Structure .. 20
 7.10 Conventional Foundation Design – Tower Structure .. 21
 7.11 Mat Foundation Design – Tower Structure ... 22
 7.12 Foundation Settlement – Tower Structure .. 22
 7.13 Lateral Design .. 23
 7.14 Concrete Slabs-on-Grade .. 24
 7.15 Preliminary Pavement Recommendations .. 25
 7.16 Retaining Walls Design ... 27
 7.17 Dynamic (Seismic) Lateral Forces .. 28
 7.18 Retaining Wall Drainage ... 28
 7.19 Elevator Pit Design ... 29
 7.20 Elevator Piston .. 29
 7.21 Temporary Excavations ... 30
 7.22 Slot Cutting .. 30
 7.23 Shoring – Soldier Pile Design and Installation .. 33
 7.24 Tie-Back Anchors .. 37
 7.25 Anchor Installation ... 38
 7.26 Anchor Testing ... 38
 7.27 Internal Bracing ... 39
 7.28 Surcharge from Adjacent Structures and Improvements ... 39
 7.29 Stormwater Infiltration ... 41
 7.30 Surface Drainage ... 42
 7.31 Plan Review .. 42
LIMITATIONS AND UNIFORMITY OF CONDITIONS

LIST OF REFERENCES

MAPS, TABLES, AND ILLUSTRATIONS
 Figure 1, Vicinity Map
 Figure 2, Site Plan
 Figure 3, Regional Fault Map
 Figure 4, Regional Seismicity Map
 Figure 5, Retaining Wall Pressure Calculation
 Figures 6 and 7, Retaining Wall Drainage
 Figure 8, Shoring Wall Pressure Calculation
 Figure 9, Percolation Test Results

APPENDIX A
 FIELD INVESTIGATION
 Figures A1 through A5, Boring Logs

APPENDIX B
 LABORATORY TESTING
 Figure B1, Direct Shear Test Results
 Figures B2 through B4, Consolidation Test Results
 Figure B5, Lab Test Results
 Figure B6, Corrosivity Test Results
GEOTECHNICAL INVESTIGATION

1. PURPOSE AND SCOPE

This report presents the results of a geotechnical investigation for the proposed mixed-use development located at 600 South San Pedro Street in the City of Los Angeles, California (see Vicinity Map, Figure 1). The purpose of the investigation was to evaluate subsurface soil and geologic conditions underlying the site and, based on conditions encountered, to provide conclusions and recommendations pertaining to the geotechnical aspects of design and construction.

The scope of this investigation included a site reconnaissance, field exploration, laboratory testing, engineering analysis, and the preparation of this report. The site was explored on February 10, 2018, by excavating five 8-inch diameter borings to depths ranging from approximately 20 to 40 feet below the existing ground surface utilizing a truck-mounted hollow-stem auger drilling machine. The approximate locations of the exploratory borings are depicted on the Site Plan (see Figure 2). A detailed discussion of the field investigation, including boring logs, is presented in Appendix A.

Laboratory tests were performed on selected soil samples obtained during the investigation to determine pertinent physical and chemical soil properties. Appendix B presents a summary of the laboratory test results.

The recommendations presented herein are based on analysis of the data obtained during the investigation and our experience with similar soil and geologic conditions. References reviewed to prepare this report are provided in the List of References section.

If project details vary significantly from those described herein, Geocon should be contacted to determine the necessity for review and possible revision of this report.

2. SITE AND PROJECT DESCRIPTION

The subject site is located at 600 South San Pedro Street in the City of Los Angeles, California. The site is an irregularly-shaped parcel and is currently occupied by an asphalt parking lot. The site is bounded by South San Pedro to the west, by East 6th Street, and by existing single, two- and four-story commercial structures, surface parking, and Crocker Street to the east and south (based on project north, see Figure 2). The site is relatively level, with no pronounced highs or lows. Surface water drainage at the site appears to be by sheet flow along the existing ground contours to the city streets. Vegetation onsite consists of grass and trees, which are located in isolated planter areas.

Based on the information provided by the Client, it is our understanding that the proposed development will consist of a 19-story tower over a basement level and an adjacent four-story on-grade parking structure with retail space on the ground level. The proposed project is depicted on the Site Plan (see Figure 2).
Based on the preliminary nature of the design at this time, wall and column loads were not available. It is anticipated column loads for the proposed parking structure will up to 600 kips, and wall loads will be up to 6 kips per linear foot. It is anticipated that a bearing pressure of 6,500 pounds per square foot (psf) may be required for support of the proposed tower.

Once the design phase and foundation loading configuration proceeds to a more finalized plan, the recommendations within this report should be reviewed and revised, if necessary. Any changes in the design, location or elevation of any structure, as outlined in this report, should be reviewed by this office. Geocon should be contacted to determine the necessity for review and possible revision of this report.

3. GEOLOGIC SETTING

The site is located in the northwestern portion of the Los Angeles Basin, a coastal plain bounded by the Santa Monica Mountains on the north, the Elysian Hills and Repetto Hills on the northeast, the Puente Hills and Whittier Fault on the east, the Palos Verdes Peninsula and Pacific Ocean on the west and south, and the Santa Ana Mountains and San Joaquin Hills on the southeast. The basin is underlain by a deep structural depression which has been filled by both marine and continental sedimentary deposits underlain by a basement complex of igneous and metamorphic composition (Yerkes, et al., 1965). Regionally, the site is located within the northern portion of the Peninsular Ranges geomorphic province. This geomorphic province is characterized by northwest-trending physiographic and geologic features such as the Newport-Inglewood Fault Zone located approximately 6.8 miles to the southwest.

4. SOIL AND GEOLOGIC CONDITIONS

Based on our field investigation and published geologic maps of the area, the site is underlain by artificial fill and unconsolidated Holocene age alluvium consisting of sand, silt, clay and gravel derived primarily from the Los Angeles River to the east and the bedrock topographic high to the north (Dibblee, 1989; California Geological Survey, 2012). Detailed stratigraphic profiles are provided on the boring logs in Appendix A.

4.1 Artificial Fill

Artificial fill was encountered in our field explorations to a maximum depth of 3½ feet below existing ground surface. The artificial fill generally consists of brown to dark brown silty sand and poorly graded sand with some fine to coarse gravel. The artificial fill is characterized as moist and very loose to medium dense. The fill is likely the result of past grading or construction activities at the site. Deeper fill may exist between excavations and in other portions of the site that were not directly explored.
4.2 Alluvium

Holocene age alluvium was encountered beneath the fill and at the ground surface in boring B4. The alluvium generally consists of brown to light brown or light gray silty sand and poorly graded to well-graded sand with varying amounts of fine to coarse gravel and locally some cobbles. The alluvial soils are primarily fine- to coarse-grained, moist and loose to very dense.

5. GROUNDWATER

Review of the Seismic Hazard Zone Report for the Los Angeles Quadrangle (California Division of Mines and Geology [CDMG], 1998) indicates the historically highest groundwater level in the area is approximately 90 to 95 feet beneath the ground surface. Groundwater information presented in this document is generated from data collected in the early 1900’s to the late 1990s. Based on current groundwater basin management practices, it is unlikely that groundwater levels will ever exceed the historic high levels.

Groundwater was not encountered in our borings, drilled to a maximum depth of 40 feet below the existing ground surface. Based on the historic high groundwater levels in the site vicinity (CDMG, 1998), the lack of groundwater in our borings, and the depth of proposed construction, groundwater is neither expected to be encountered during construction, nor have a detrimental effect on the project. However, it is not uncommon for groundwater levels to vary seasonally or for groundwater seepage conditions to develop where none previously existed, especially in impermeable fine-grained soils which are heavily irrigated or after seasonal rainfall. In addition, recent requirements for stormwater infiltration could result in shallower seepage conditions in the immediate site vicinity. Proper surface drainage of irrigation and precipitation will be critical for future performance of the project. Recommendations for drainage are provided in the Surface Drainage section of this report (see Section 7.30).

6. GEOLOGIC HAZARDS

6.1 Surface Fault Rupture

The numerous faults in Southern California include active, potentially active, and inactive faults. The criteria for these major groups are based on criteria developed by the California Geological Survey (CGS, formerly known as CDMG) for the Alquist-Priolo Earthquake Fault Zone Program (CGS, 2018a). By definition, an active fault is one that has had surface displacement within Holocene time (about the last 11,700 years). A potentially active fault has demonstrated surface displacement during Quaternary time (approximately the last 1.6 million years), but has had no known Holocene movement. Faults that have not moved in the last 1.6 million years are considered inactive.
The site is not within a state-designated Alquist-Priolo Earthquake Fault Zone for surface fault rupture hazards (CGS, 2018b; CGS, 2017). No active or potentially active faults with the potential for surface fault rupture are known to pass directly beneath the site. Therefore, the potential for surface rupture due to faulting occurring beneath the site during the design life of the proposed development is considered low. However, the site is located in the seismically active Southern California region, and could be subjected to moderate to strong ground shaking in the event of an earthquake on one of the many active Southern California faults. The faults in the vicinity of the site are shown in Figure 3, Regional Fault Map.

The closest surface trace of an active fault to the site is the Hollywood Fault located approximately 5.0 miles to the north (CGS, 2017; Ziony and Jones, 1989). Other nearby active faults are the Raymond Fault, the Newport-Inglewood Fault Zone, the Verdugo Fault, and the Santa Monica Fault located approximately 5.5 miles north, 6.8 miles southwest, 7.6 miles northeast, and 10 miles west-northwest of the site, respectively (Ziony and Jones, 1989). The active San Andreas Fault Zone is located approximately 34 miles northeast of the site.

Several buried thrust faults, commonly referred to as blind thrusts, underlie the Los Angeles Basin at depth. These faults are not exposed at the ground surface and are typically identified at depths greater than 3.0 kilometers. The October 1, 1987 Mw 5.9 Whittier Narrows earthquake and the January 17, 1994 Mw 6.7 Northridge earthquake were a result of movement on the Puente Hills Blind Thrust and the Northridge Thrust, respectively. The Puente Hills Blind Thrust underlies the site at depth. This deep thrust fault and others in the Los Angeles area are not exposed at the surface and do not present a potential surface fault rupture hazard at the site; however, these thrust faults are considered active features capable of generating future earthquakes that could result in moderate to significant ground shaking at the site.

6.2 Seismicity

As with all of Southern California, the site has experienced historic earthquakes from various regional faults. The seismicity of the region surrounding the site was formulated based on research of an electronic database of earthquake data. The epicenters of recorded earthquakes with magnitudes equal to or greater than 5.0 in the site vicinity are depicted on Figure 4, Regional Seismicity Map. A partial list of moderate to major magnitude earthquakes that have occurred in the Southern California area within the last 100 years is included in the following table.
LIST OF HISTORIC EARTHQUAKES

<table>
<thead>
<tr>
<th>Earthquake (Oldest to Youngest)</th>
<th>Date of Earthquake</th>
<th>Magnitude</th>
<th>Distance to Epicenter (Miles)</th>
<th>Direction to Epicenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jacinto-Hemet area</td>
<td>April 21, 1918</td>
<td>6.8</td>
<td>74</td>
<td>ESE</td>
</tr>
<tr>
<td>Near Redlands</td>
<td>July 23, 1923</td>
<td>6.3</td>
<td>57</td>
<td>E</td>
</tr>
<tr>
<td>Long Beach</td>
<td>March 10, 1933</td>
<td>6.4</td>
<td>33</td>
<td>SE</td>
</tr>
<tr>
<td>Tehachapi</td>
<td>July 21, 1952</td>
<td>7.5</td>
<td>79</td>
<td>NW</td>
</tr>
<tr>
<td>San Fernando</td>
<td>February 9, 1971</td>
<td>6.6</td>
<td>27</td>
<td>NNW</td>
</tr>
<tr>
<td>Whittier Narrows</td>
<td>October 1, 1987</td>
<td>5.9</td>
<td>10</td>
<td>E</td>
</tr>
<tr>
<td>Sierra Madre</td>
<td>June 28, 1991</td>
<td>5.8</td>
<td>21</td>
<td>NE</td>
</tr>
<tr>
<td>Landers</td>
<td>June 28, 1992</td>
<td>7.3</td>
<td>104</td>
<td>E</td>
</tr>
<tr>
<td>Big Bear</td>
<td>June 28, 1992</td>
<td>6.4</td>
<td>82</td>
<td>E</td>
</tr>
<tr>
<td>Northridge</td>
<td>January 17, 1994</td>
<td>6.7</td>
<td>20</td>
<td>NW</td>
</tr>
<tr>
<td>Hector Mine</td>
<td>October 16, 1999</td>
<td>7.1</td>
<td>119</td>
<td>ENE</td>
</tr>
</tbody>
</table>

The site could be subjected to strong ground shaking in the event of an earthquake. However, this hazard is common in Southern California and the effects of ground shaking can be mitigated if the proposed structures are designed and constructed in conformance with current building codes and engineering practices.

6.3 Seismic Design Criteria

The following table summarizes site-specific design criteria obtained from the 2016 California Building Code (CBC; Based on the 2015 International Building Code [IBC] and ASCE 7-10), Chapter 16 Structural Design, Section 1613 Earthquake Loads. The data was calculated using the computer program *U.S. Seismic Design Maps*, provided by the USGS. The short spectral response uses a period of 0.2 second. We evaluated the Site Class based on the discussion in Section 1613.3.2 of the 2016 CBC and Table 20.3-1 of ASCE 7-10. The values presented below are for the risk-targeted maximum considered earthquake (MCE$_r$).
2016 CBC SEISMIC DESIGN PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>2016 CBC Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Class</td>
<td>D</td>
<td>Section 1613.3.2</td>
</tr>
<tr>
<td>MCE\textsubscript{R} Ground Motion Spectral Response Acceleration – Class B (short), S\textsubscript{S}</td>
<td>2.348g</td>
<td>Figure 1613.3.1(1)</td>
</tr>
<tr>
<td>MCE\textsubscript{R} Ground Motion Spectral Response Acceleration – Class B (1 sec), S\textsubscript{I}</td>
<td>0.824g</td>
<td>Figure 1613.3.1(2)</td>
</tr>
<tr>
<td>Site Coefficient, F\textsubscript{A}</td>
<td>1.0</td>
<td>Table 1613.3.3(1)</td>
</tr>
<tr>
<td>Site Coefficient, F\textsubscript{V}</td>
<td>1.5</td>
<td>Table 1613.3.3(2)</td>
</tr>
<tr>
<td>Site Class Modified MCE\textsubscript{R} Spectral Response Acceleration (short), S\textsubscript{MS}</td>
<td>2.348g</td>
<td>Section 1613.3.3 (Eqn 16-37)</td>
</tr>
<tr>
<td>Site Class Modified MCE\textsubscript{R} Spectral Response Acceleration – (1 sec), S\textsubscript{M1}</td>
<td>1.235g</td>
<td>Section 1613.3.3 (Eqn 16-38)</td>
</tr>
<tr>
<td>5% Damped Design Spectral Response Acceleration (short), S\textsubscript{DS}</td>
<td>1.565g</td>
<td>Section 1613.3.4 (Eqn 16-39)</td>
</tr>
<tr>
<td>5% Damped Design Spectral Response Acceleration (1 sec), S\textsubscript{D1}</td>
<td>0.824g</td>
<td>Section 1613.3.4 (Eqn 16-40)</td>
</tr>
</tbody>
</table>

The table below presents the mapped maximum considered geometric mean (MCE\textsubscript{G}) seismic design parameters for projects located in Seismic Design Categories of D through F in accordance with ASCE 7-10.

ASCE 7-10 PEAK GROUND ACCELERATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>ASCE 7-10 Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped MCE\textsubscript{G} Peak Ground Acceleration, PGA</td>
<td>0.883g</td>
<td>Figure 22-7</td>
</tr>
<tr>
<td>Site Coefficient, F\textsubscript{PGA}</td>
<td>1.0</td>
<td>Table 11.8-1</td>
</tr>
<tr>
<td>Site Class Modified MCE\textsubscript{G} Peak Ground Acceleration, PGAM</td>
<td>0.883g</td>
<td>Section 11.8.3 (Eqn 11.8-1)</td>
</tr>
</tbody>
</table>

The Maximum Considered Earthquake Ground Motion (MCE) is the level of ground motion that has a 2 percent chance of exceedance in 50 years, with a statistical return period of 2,475 years. According to the 2016 California Building Code and ASCE 7-10, the MCE is to be utilized for the evaluation of liquefaction, lateral spreading, seismic settlements, and it is our understanding that the intent of the Building code is to maintain “Life Safety” during a MCE event. The Design Earthquake Ground Motion (DE) is the level of ground motion that has a 10 percent chance of exceedance in 50 years, with a statistical return period of 475 years.
Deaggregation of the MCE peak ground acceleration was performed using the USGS online Unified Hazard Tool, 2008 Conterminous U.S. Dynamic edition. The result of the deaggregation analysis indicates that the predominant earthquake contributing to the MCE peak ground acceleration is characterized as a 6.67 magnitude event occurring at a hypocentral distance of 6.81 kilometers from the site.

Deaggregation was also performed for the Design Earthquake (DE) peak ground acceleration, and the result of the analysis indicates that the predominant earthquake contributing to the DE peak ground acceleration is characterized as a 6.66 magnitude occurring at a hypocentral distance of 11.35 kilometers from the site.

Conformance to the criteria in the above tables for seismic design does not constitute any kind of guarantee or assurance that significant structural damage or ground failure will not occur if a large earthquake occurs. The primary goal of seismic design is to protect life, not to avoid all damage, since such design may be economically prohibitive.

6.4 Liquefaction Potential

Liquefaction is a phenomenon in which loose, saturated, relatively cohesionless soil deposits lose shear strength during strong ground motions. Primary factors controlling liquefaction include intensity and duration of ground motion, gradation characteristics of the subsurface soils, in-situ stress conditions, and the depth to groundwater. Liquefaction is typified by a loss of shear strength in the liquefied layers due to rapid increases in pore water pressure generated by earthquake accelerations.

The current standard of practice, as outlined in the “Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction in California” and “Special Publication 117A, Guidelines for Evaluating and Mitigating Seismic Hazards in California” requires liquefaction analysis to a depth of 50 feet below the lowest portion of the proposed structure. Liquefaction typically occurs in areas where the soils below the water table are composed of poorly consolidated, fine to medium-grained, primarily sandy soil. In addition to the requisite soil conditions, the ground acceleration and duration of the earthquake must also be of a sufficient level to induce liquefaction.

The State of California Seismic Hazard Zone Map for the Los Angeles Quadrangle (CDMG, 1999; CGS, 2017) indicates that the site is not located in an area designated as having a potential for liquefaction. In addition, a review of the County of Los Angeles Safety Element (Leighton, 1990) indicates that the site is not located within an area identified as having a potential for liquefaction. As previously indicated, the historic high groundwater level in the site vicinity is reported to be at a depth of approximately 90 to 95 feet beneath the existing ground surface (CDMG, 1998). Based on these considerations, it is our opinion that the potential for liquefaction and associated ground deformations beneath the site is very low.
6.5 Slope Stability

The topography at the site is relatively level and the topography in the immediate site vicinity slopes gently to the southwest. The site is not located within a City of Los Angeles Hillside Grading Area or a Hillside Ordinance Area (City of Los Angeles, 2018). The County of Los Angeles Safety Element (Leighton, 1990) indicates the site is not within an area identified as a “hillside area” or an area having a potential for slope instability. Additionally, the site is not located within an area identified as having a potential for seismic slope instability (CDMG, 1999, CGS, 2017). There are no known landslides near the site, nor is the site in the path of any known or potential landslides. Therefore, the potential for slope stability hazards to adversely affect the proposed development is considered low.

6.6 Earthquake-Induced Flooding

Earthquake-induced flooding is inundation caused by failure of dams or other water-retaining structures due to earthquakes. Based on a review of the Los Angeles County Safety Element (Leighton, 1990), the site is not located within a potential inundation area for an earthquake-induced dam failure. The probability of earthquake-induced flooding is considered very low.

6.7 Tsunamis, Seiches, and Flooding

The site is not located within a coastal area. Therefore, tsunamis, seismic sea waves, are not considered a significant hazard at the site.

Seiches are large waves generated in enclosed bodies of water in response to ground shaking. No major water-retaining structures are located immediately up gradient from the project site. Therefore, flooding resulting from a seismically-induced seiche is considered unlikely.

The site is within an area of minimal flooding (Zone X) as defined by the Federal Emergency Management Agency (FEMA, 2018: LACDPW, 2018b).

6.8 Oil Fields & Methane Potential

Based on a review of the California Division of Oil, Gas and Geothermal Resources (DOGGR) Well Finder Website, the site is not located within the limits of an oilfield and oil or gas wells are not located in the immediate site vicinity (DOGGR, 2018). However, due to the voluntary nature of record reporting by the oil well drilling companies, wells may be improperly located or not shown on the location map and undocumented wells could be encountered during construction. Any wells encountered during construction will need to be properly abandoned in accordance with the current requirements of the DOGGR.
The site is not located within the boundaries of a city-designated Methane Zone or Methane Buffer Zone (City of Los Angeles, 2018). Since the site is not located within the boundaries of a known oil field, the potential for the presence of methane or other volatile gases at the site is considered low. However, should it be determined that a methane study is required for the proposed development it is recommended that a qualified methane consultant be retained to perform the study and provide mitigation measures as necessary.

6.9 Subsidence

Subsidence occurs when a large portion of land is displaced vertically, usually due to the withdrawal of groundwater, oil, or natural gas. Soils that are particularly subject to subsidence include those with high silt or clay content. The site is not located within an area of known ground subsidence. No large-scale extraction of groundwater, gas, oil, or geothermal energy is occurring or planned at the site or in the general site vicinity. Therefore, the potential for subsidence due to withdrawal of fluids or gases to adversely impact the site is considered low.
7. CONCLUSIONS AND RECOMMENDATIONS

7.1 General

7.1.1 It is our opinion that neither soil nor geologic conditions were encountered during the investigation that would preclude the construction of the proposed development provided the recommendations presented herein are followed and implemented during design and construction.

7.1.2 Up to 3½ feet of existing artificial fill was encountered during the site investigation. The existing fill encountered is believed to be the result of past grading and construction activities at the site. Deeper fill may exist in other areas of the site that were not directly explored. The encountered fill will likely be removed during future excavation for the tower basement. It is our opinion that the existing fill, in its present condition, is not suitable for direct support of proposed foundations or slabs. The existing fill and site soils are suitable for re-use as engineered fill provided the recommendations in the Grading section of this report are followed (see Section 7.4).

7.1.3 Based on these considerations, it is recommended that the upper six feet of existing earth materials within the parking structure footprint area be excavated and properly compacted for foundation and slab support. Deeper excavations should be conducted as needed to remove any encountered fill or soft soils as necessary at the direction of the Geotechnical Engineer (a representative of Geocon). The limits of existing fill and/or soft soil removal will be verified by the Geocon representative during site grading activities. The excavation should extend laterally a minimum distance of three feet beyond the building footprint areas, including building appurtenances, or a distance equal to the depth of fill below the foundation, whichever is greater. Where grading and lateral excavation cannot be conducted, such as due to property line constraints, the proposed parking structure foundations may derive support competent alluvium at or below a depth of six feet below the ground surface. Recommendations for earthwork are provided in the Grading section of this report (see Section 7.4).

7.1.4 Subsequent to the recommended grading, the proposed parking structure may be supported on a conventional shallow spread foundation system deriving support in newly placed engineered fill and or competent alluvium at or below a depth of six feet below the ground surface. Where foundations are deepened to alluvium, special excavation methods such as shoring or slot-cutting will be required; special construction techniques such as two-part foundation construction can also be considered and should be discussed with the project team.
7.1.5 All excavations must be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon). Prior to placing any fill, the upper twelve inches of the excavation bottom must be scarified, moistened, and proof-rolled with heavy equipment in the presence of the Geotechnical Engineer (a representative of Geocon West, Inc.).

7.1.6 It is anticipated that stable excavations for the recommended grading associated with the proposed parking structure can be achieved with sloping measures. However, excavations in close proximity to an property line and/or existing structure will require special excavation measures in order to maintain lateral support of offsite improvements. Excavation recommendations are provided in the Temporary Excavations section of this report (Section 7.21).

7.1.7 Excavation for the subterranean portion of the structure is anticipated to penetrate through the existing artificial fill and expose undisturbed alluvial soils throughout the excavation bottom.

7.1.8 It is anticipated that the tower core will be supported on a reinforced concrete mat foundation, and that elsewhere conventional spread foundations may be used. Recommendations for the tower structure foundation design are provided herein as Sections 7.9 through 7.12. All foundations should derive support in the competent undisturbed alluvial soils generally found at or below the anticipated bottom of subterranean excavation. For the purposes of this report, the foundation depth has been assumed to be at or below 15 feet below the existing ground surface. Foundations should be deepened as necessary to extend into satisfactory soils and must be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon West, Inc.).

7.1.9 Once proposed building loads become available and elevations are established, additional analyses will be required to evaluate the anticipated total and differential settlements between the foundation elements to check if the settlements are in conformance with the City of Los Angeles policy or provide updated foundation design recommendations.

7.1.10 Due to the depth of the excavation and the proximity to the property lines, city streets and adjacent offsite structures, excavations for the tower structure will require sloping and/or shoring measures in order to provide a stable excavation. Where shoring is required it is recommended that a soldier pile shoring system be utilized. In addition, where the proposed excavation will be deeper than and adjacent to an offsite structure, the proposed shoring should be designed to resist the surcharge imposed by the adjacent offsite structure. Recommendations for Temporary Excavations are provided in Section 7.21 of this report.
7.1.11 Due to the nature of the proposed design and intent for a subterranean level, waterproofing of subterranean walls and slabs is suggested. Particular care should be taken in the design and installation of waterproofing to avoid moisture problems, or actual water seepage into the structure through any normal shrinkage cracks which may develop in the concrete walls, floor slab, foundations and/or construction joints. The design and inspection of the waterproofing is not the responsibility of the geotechnical engineer. A waterproofing consultant should be retained in order to recommend a product or method, which would provide protection to subterranean walls, floor slabs and foundations.

7.1.12 Foundations for small outlying structures, such as block walls less than 6 feet in height, planter walls or trash enclosures, which will not be tied to the proposed structure, may be supported on conventional foundations deriving support on a minimum of 12 inches of newly placed engineered fill which extends laterally at least 12 inches beyond the foundation area. Where excavation and compaction cannot be performed or is undesirable, foundations may derive support directly in the competent undisturbed alluvial soils and should be deepened as necessary to maintain a minimum 12 inch embedment into the recommended bearing materials. The design team and contractor should be aware that the depth to alluvial soils as encountered during our field exploration varied from the ground surface to 3½ feet below the existing ground surface, and deeper fill may exist between excavations and in other portions of the site that were not directly explored. If the soils exposed in the excavation bottom are soft or loose, compaction of the soils will be required prior to placing steel or concrete. Compaction of the foundation excavation bottom is typically accomplished with a compaction wheel or mechanical whacker and must be observed and approved by a Geocon representative.

7.1.13 Where new paving is to be placed, it is recommended that all existing fill and soft alluvial soils be excavated and properly compacted for paving support. The client should be aware that excavation and compaction of all existing fill and soft alluvial soils in the area of new paving is not required; however, paving constructed over existing uncertified fill or unsuitable alluvial soil may experience increased settlement and/or cracking, and may therefore have a shorter design life and increased maintenance costs. As a minimum, the upper 12 inches of subgrade soil should be scarified and properly compacted for paving support. Paving recommendations are provided in Preliminary Pavement Recommendations section of this report (see Section 7.15).

7.1.14 Based on the results of percolation testing performed at the site, a stormwater infiltration system is considered feasible for this project. Recommendations for infiltration are provided in the Stormwater Infiltration section of this report (see Section 7.29).
7.1.15 Once the design and foundation loading configuration for the proposed structure proceeds to a more finalized plan, the recommendations within this report should be reviewed and revised, if necessary. Based on the final foundation loading configurations, the potential for settlement should be re-evaluated by this office.

7.1.16 Any changes in the design, location or elevation, as outlined in this report, should be reviewed by this office. Geocon should be contacted to determine the necessity for review and possible revision of this report.

7.2 Soil and Excavation Characteristics

7.2.1 The in-situ soils can be excavated with moderate effort using conventional excavation equipment. Due to the predominantly granular nature of the site soils, caving should be anticipated in unshored excavations, especially where granular soils are encountered. Although not encountered in our borings, cobbles and/or occasional boulders are common in this area of Los Angeles and may be encountered. In addition, the contractor should be aware that formwork will likely be required to prevent caving of shallow spread foundation excavations, and drilling conditions may be difficult due to the potential for caving, as well as the presence of cobbles and boulders.

7.2.2 It is the responsibility of the contractor to ensure that all excavations and trenches are properly shored and maintained in accordance with applicable OSHA rules and regulations to maintain safety and maintain the stability of existing adjacent improvements.

7.2.3 All onsite excavations must be conducted in such a manner that potential surcharges from existing structures, construction equipment, and vehicle loads are resisted. The surcharge area may be defined by a 1:1 projection down and away from the bottom of an existing foundation or vehicle load. Penetrations below this 1:1 projection will require special excavation measures such as sloping or shoring. Excavation recommendations are provided in the Temporary Excavations section of this report (see Section 7.21).

7.2.4 The upper 5 feet of existing site soils encountered during this investigation are considered to have a “low” expansive potential (EI = 0); and are classified as “non-expansive” based on the 2016 California Building Code (CBC) Section 1803.5.3. Recommendations presented herein assume that the parking structure foundations and slabs will derive support in these materials or in competent alluvium. Based on the depth of the proposed subterranean level and granular nature of the site soils, the proposed tower would not be prone to the effects of expansive soil.
7.3 Minimum Resistivity, pH, and Water-Soluble Sulfate

7.3.1 Potential of Hydrogen (pH) and resistivity testing as well as chloride content testing were performed on representative samples of soil to generally evaluate the corrosion potential to surface utilities. The tests were performed in accordance with California Test Method Nos. 643 and 422 and indicate that the soils are considered “corrosive” with respect to corrosion of buried ferrous metals on site. The results are presented in Appendix B (Figure B6) and should be considered for design of underground structures.

7.3.2 Laboratory tests were performed on representative samples of the site materials to measure the percentage of water-soluble sulfate content. Results from the laboratory water-soluble sulfate tests are presented in Appendix B (Figure B6) and indicate that the on-site materials possess “negligible” sulfate exposure to concrete structures as defined by 2016 CBC Section 1904 and ACI 318-11 Sections 4.2 and 4.3.

7.3.3 Geocon West, Inc. does not practice in the field of corrosion engineering and mitigation. If corrosion sensitive improvements are planned, it is recommended that a corrosion engineer be retained to evaluate corrosion test results and incorporate the necessary precautions to avoid premature corrosion of buried metal pipes and concrete structures in direct contact with the soils.

7.4 Grading

7.4.1 Earthwork should be observed, and compacted fill tested by representatives of Geocon West, Inc. The existing fill and alluvial soil encountered during exploration is suitable for re-use as engineered fill, provided any encountered oversize material (greater than 6 inches) and any encountered deleterious debris are removed.

7.4.2 A preconstruction conference should be held at the site prior to the beginning of grading operations with the owner, contractor, civil engineer, geotechnical engineer, and building official in attendance. Special soil handling requirements can be discussed at that time.

7.4.3 Grading should commence with the removal of all existing vegetation and existing improvements from the area to be graded. Deleterious debris such as wood and root structures should be exported from the site and should not be mixed with the fill soils. Asphalt and concrete should not be mixed with the fill soils unless approved by the Geotechnical Engineer. All existing underground improvements planned for removal should be completely excavated and the resulting depressions properly backfilled in accordance with the procedures described herein. Once a clean excavation bottom has been established it must be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon West, Inc.) and the City of Los Angeles Inspector.
7.4.4 As a minimum, it is recommended that the upper six feet of existing earth materials within the proposed parking structure footprint area be excavated and properly compacted for foundation and slab support. Deeper excavations should be conducted as necessary to remove deeper artificial fill or soft alluvial soil at the direction of the Geotechnical Engineer (a representative of Geocon). The limits of existing fill and/or soft alluvial soils removal will be verified by the Geocon representative during site grading activities. The excavation should extend laterally a minimum distance of 3 feet beyond the building footprint area, including building appurtenances, or a distance equal to the depth of fill below the foundation, whichever is greater. Foundations should be deepened as necessary to extend into satisfactory soils and must be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon West, Inc.).

7.4.5 Where excavation and grading cannot be accomplished due to property line constraints, conventional foundations should be deepened as necessary to derive support in the undisturbed alluvial soils found at or below a depth of six feet below the existing ground surface. Foundations should be deepened as necessary to penetrate through any encountered fill or unsuitable soils and must be observed and approved by a Geocon representative.

7.4.6 Performing open excavations adjacent to and deeper than existing foundations could potentially remove lateral support and/or undermine the existing foundations and are not acceptable. Excavations adjacent to existing foundations will require special excavation measures. Recommendations for temporary excavations are provided in Section 7.21.

7.4.7 The City of Los Angeles Department of Building and Safety requires a minimum compactive effort of 95 percent of the laboratory maximum dry density in accordance with ASTM D 1557 (latest edition) where the soils to be utilized in the fill have less than 15 percent finer than 0.005 millimeters. All fill and backfill soils should be placed in horizontal loose layers approximately 6 to 8 inches thick, moisture conditioned to optimum moisture content, and properly compacted to 95 percent relative compaction in accordance with ASTM D 1557 (latest edition).

7.4.8 All excavations must be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon). Prior to placing any fill, the upper 12 inches of the excavation bottom must be scarified, moistened, and proof-rolled with heavy equipment in the presence of the Geotechnical Engineer (a representative of Geocon West, Inc.).

7.4.9 All fill and backfill soils should be placed in horizontal loose layers approximately 6 to 8 inches thick, moisture conditioned to optimum moisture content, and properly compacted to a minimum 90 percent of the maximum dry density in accordance with ASTM D 1557 (latest edition).
7.4.10 Although not anticipated for this project, all imported fill shall be observed, tested, and approved by Geocon West, Inc. prior to bringing soil to the site. Rocks larger than 6 inches in diameter shall not be used in the fill. If necessary, import soils used as structural fill should have an expansion index less than 20 and corrosivity properties that are equally or less detrimental to that of the existing onsite soils (see Figure B6). Import soils placed in the building area should be placed uniformly across the building pad or in a manner that is approved by the Geotechnical Engineer (a representative of Geocon).

7.4.11 Foundations for small outlying structures, such as block walls less than 6 feet high, planter walls or trash enclosures, which will not be tied to the proposed building, may be supported on conventional foundations deriving support on a minimum of 12 inches of newly placed engineered fill which extends laterally at least 12 inches beyond the foundation area. Where excavation and proper compaction cannot be performed or is undesirable, foundations may derive support directly in the undisturbed alluvial soils, and should be deepened as necessary to maintain a minimum 12-inch embedment into the recommended bearing material. The design team and contractor should be aware that the depth to alluvial soils as encountered during our field exploration varied from the ground surface to 3½ feet below the existing ground surface, and deeper fill may exist between excavations and in other portions of the site that were not directly explored. If the soils exposed in the excavation bottom are soft or loose, compaction of the soils will be required prior to placing steel or concrete. Compaction of the foundation excavation bottom is typically accomplished with a compaction wheel or mechanical whacker and must be observed and approved by a Geocon representative.

7.4.12 Where new paving is to be placed, it is recommended that all existing fill and soft alluvium be excavated and properly compacted for paving support. As a minimum, the upper 12 inches of soil should be scarified, moisture conditioned to optimum moisture content, and compacted to at least 95 percent relative compaction, as determined by ASTM Test Method D 1557 (latest edition). Paving recommendations are provided in Preliminary Pavement Recommendations section of this report (see Section 7.15).

7.4.13 Utility trenches should be properly backfilled in accordance with the requirements of the Green Book (latest edition). The pipe should be bedded with clean sands (Sand Equivalent greater than 30) to a depth of at least 1 foot over the pipe, and the bedding material must be inspected and approved in writing by the Geotechnical Engineer (a representative of Geocon). The use of gravel is not acceptable unless used in conjunction with filter fabric to prevent the gravel from having direct contact with soil. The remainder of the trench backfill may be derived from onsite soil or approved import soil, compacted as necessary, until the required compaction is obtained. The use of minimum 2-sack slurry is also acceptable (see Section 7.5). Prior to placing any bedding materials or pipes, the excavation bottom must be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon).
7.4.14 All trench and foundation excavation bottoms must be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon), prior to placing bedding materials, fill, steel, gravel, or concrete.

7.5 Controlled Low Strength Material (CLSM)

7.5.1 Controlled Low Strength Material (CLSM) may be utilized in lieu of compacted soil as engineered fill where approved in writing by the Geotechnical Engineer. Where utilized within the City of Los Angeles use of CLSM is subject to the following requirements:

Standard Requirements

1. CLSM shall be ready-mixed by a City of Los Angeles approved batch plant;
2. CLSM shall not be placed on uncertified fill, on incompetent natural soil, nor below water;
3. CLSM shall not be placed on a sloping surface with a gradient steeper than 5:1 (horizontal to vertical);
4. Placement of the CLSM shall be under the continuous inspection of a concrete deputy inspector;
5. The excavation bottom shall be accepted by the soil engineer and the City Inspector prior to placing CLSM.

Requirements for CLSM that will be used for support of footings

1. The cement content of the CLSM shall not be less than 188 pounds per cubic yard (min. 2 sacks);
2. The excavation bottom must be level, cleaned of loose soils and approved in writing by Geocon prior to placement of the CLSM;
3. The ultimate compressive strength of the CLSM shall be no less than 100 pounds per square inch (psi) when tested on the 28th-day per ASTM D4832 (latest edition), Standard Test Method for Preparation and Testing of Controlled Low Strength Material Test Cylinders. Compression testing will be performed in accordance with ASTM C39 and City of Los Angeles requirements;
4. Samples of the CLSM will be collected during placement, a minimum of one test (two cylinders) for each 50 cubic yards or fraction thereof;
5. Overexcavation for CLSM placement shall extend laterally beyond the footprint of any proposed footings as required for placement of compacted fill, unless justified otherwise by the soil engineer that footings will have adequate vertical and horizontal bearing capacity.
7.6 **Shrinkage**

7.6.1 Shrinkage results when a volume of material removed at one density is compacted to a higher density. A shrinkage factor of between 5 and 15 percent should be anticipated when excavating and compacting the upper six feet of existing earth materials on the site to an average relative compaction of 95 percent.

7.4.2 If import soils will be utilized in the building pad, the soils must be placed uniformly and at equal thickness at the direction of the Geotechnical Engineer (a representative of Geocon West, Inc.). Soils can be borrowed from non-building pad areas and later replaced with imported soils.

7.7 **Conventional Foundation Design – Parking Structure**

7.7.1 Subsequent to the recommended grading, a conventional shallow spread foundation system may be utilized for support of the proposed parking structure provided foundations derive support in newly placed engineered fill or competent alluvium at or below a depth of six feet below the ground surface. It is the intent of the Geotechnical Engineer to allow foundations to derive support in competent alluvial soils and newly placed engineered fill for this project, if project conditions warrant such an occurrence. Where foundations are deepened to alluvium, special excavation methods such as shoring or slot-cutting will be required; special construction techniques such as two-part foundation construction can also be considered and should be discussed with the project team.

7.7.2 Proposed foundations that are situated immediately adjacent to the existing foundations should be deepened as necessary to match the depth of the existing foundation to prevent a surcharge on the existing foundation.

7.7.3 Where proposed foundations will be deeper than the existing foundation, the proposed foundation must be designed to resist the surcharge imposed by the existing foundation. The surcharge area may be defined by a 1:1 projection up and away from the bottom of an existing foundation.

7.7.4 Continuous footings may be designed for an allowable bearing capacity of 3,000 pounds per square foot (psf), and should be a minimum of 12 inches in width, 18 inches in depth below the lowest adjacent grade, and 12 inches into the recommended bearing material.

7.7.5 Isolated spread foundations may be designed for an allowable bearing capacity of 3,250 psf, and should be a minimum of 24 inches in width, 18 inches in depth below the lowest adjacent grade, and 12 inches into the recommended bearing material.
7.7.6 The allowable soil bearing pressure above may be increased by 500 psf and 1,000 psf for each additional foot of foundation width and depth, respectively, up to a maximum allowable soil bearing pressure of 5,000 psf.

7.7.7 The allowable bearing pressures may be increased by one-third for transient loads due to wind or seismic forces.

7.7.8 If depth increases are utilized for the perimeter foundations, this office should be provided a copy of the final construction plans so that the excavation recommendations presented herein could be properly reviewed and revised if necessary.

7.7.9 Continuous footings should be reinforced with four No. 4 steel reinforcing bars, two placed near the top of the footing and two near the bottom. Reinforcement for spread footings should be designed by the project structural engineer.

7.7.10 The above foundation dimensions and minimum reinforcement recommendations are based on soil conditions and building code requirements only, and are not intended to be used in lieu of those required for structural purposes.

7.7.11 No special subgrade presaturation is required prior to placement of concrete. However, the slab and foundation subgrade should be sprinkled as necessary; to maintain a moist condition as would be expected in any concrete placement.

7.7.12 Foundation excavations should be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon West, Inc.), prior to the placement of reinforcing steel and concrete to verify that the excavations and exposed soil conditions are consistent with those anticipated. If unanticipated soil conditions are encountered, foundation modifications may be required.

7.7.13 This office should be provided a copy of the final construction plans so that the excavation recommendations presented herein could be properly reviewed and revised if necessary.

7.8 Foundation Settlement – Parking Structure

7.8.1 The maximum expected static settlement for conventional foundations deriving support in the recommended bearing materials and designed with a maximum bearing pressure of 5,000 psf is estimated to be less than 1 inch and occur below the heaviest loaded structural element. Settlement of the foundation system is expected to occur on initial application of loading. Differential settlement is not expected to exceed ½ inch over a distance of 20 feet.
7.8.2 Once the design and foundation loading configurations for the proposed structures proceeds to a more finalized plan, the estimated settlements presented in this report should be reviewed and revised, if necessary. If the final foundation loading configurations are greater than the assumed loading conditions, the potential for settlement should be reevaluated by this office.

7.9 **Foundation Design – Tower Structure**

7.9.1 It is anticipated that the tower core will be supported on a reinforced concrete mat foundation, and that elsewhere conventional spread foundations may be used. All foundations should derive support in the competent undisturbed alluvial soils generally found at or below the anticipated foundation depth. For the purposes of this report, the foundation depth has been assumed to be 15 feet below the existing ground surface. Foundations should be deepened as necessary to extend into satisfactory soils and must be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon West, Inc.).

7.9.2 Once proposed foundation depths and building loads are available, additional analyses may be required to evaluate the anticipated total and differential settlements between the foundation elements for verification that the settlements are in conformance with the City of Los Angeles policy. Updated foundation design recommendations will be provided as necessary in an addendum report.

7.9.3 The contractor should be aware that formwork will likely be required to prevent caving of shallow spread foundation excavations.

7.9.4 No special subgrade presaturation is required prior to placement of concrete. However, the slab and foundation subgrade should be sprinkled as necessary; to maintain a moist condition as would be expected in any concrete placement.

7.9.5 Waterproofing of subterranean walls and slabs is recommended for this project for any portions of the structure that will be constructed below the groundwater table. Particular care should be taken in the design and installation of waterproofing to avoid moisture problems, or actual water seepage into the structure through any normal shrinkage cracks which may develop in the concrete walls, floor slab, foundations and/or construction joints. The design and inspection of the waterproofing is not the responsibility of the geotechnical engineer. A waterproofing consultant should be retained in order to recommend a product or method, which would provide protection to subterranean walls, floor slabs and foundations.
7.9.6 Foundation excavations should be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon West, Inc.), prior to the placement of the methane system, reinforcing steel and concrete to verify that the excavations and exposed soil conditions are consistent with those anticipated. If unanticipated soil conditions are encountered, foundation modifications may be required.

7.9.7 This office should be provided a copy of the final construction plans so that the excavation recommendations presented herein could be properly reviewed and revised if necessary.

7.10 **Conventional Foundation Design – Tower Structure**

7.10.1 Continuous footings may be designed for an allowable bearing capacity of 3,400 pounds per square foot (psf), and should be a minimum of 12 inches in width, 18 inches in depth below the lowest adjacent grade, and 12 inches into the recommended bearing material.

7.10.2 Isolated spread foundations may be designed for an allowable bearing capacity of 4,000 psf, and should be a minimum of 24 inches in width, 18 inches in depth below the lowest adjacent grade, and 12 inches into the recommended bearing material.

7.10.3 The allowable soil bearing pressure above may be increased by 500 psf and 1,000 psf for each additional foot of foundation width and depth, respectively, up to a maximum allowable soil bearing pressure of 6,500 psf.

7.10.4 The allowable bearing pressures may be increased by one-third for transient loads due to wind or seismic forces.

7.10.5 If depth increases are utilized for the perimeter foundations, this office should be provided a copy of the final construction plans so that the excavation recommendations presented herein could be properly reviewed and revised if necessary.

7.10.6 Continuous footings should be reinforced with four No. 4 steel reinforcing bars, two placed near the top of the footing and two near the bottom. Reinforcement for spread footings should be designed by the project structural engineer.

7.10.7 The above foundation dimensions and minimum reinforcement recommendations are based on soil conditions and building code requirements only, and are not intended to be used in lieu of those required for structural purposes.
7.11 Mat Foundation Design – Tower Structure

7.11.1 It is anticipated that the mat foundation constructed for support of the tower cores will impart an average pressure of approximately 5,000 to 6,500 psf. The recommended maximum allowable bearing value is 6,500 psf. The allowable bearing pressure may be increased by up to one-third for transient loads due to wind or seismic forces.

7.11.2 A vertical modulus of subgrade reaction of 100 pounds per cubic inch (pci) may be used in the design of mat foundations deriving support in competent alluvial soils generally found at or below the anticipated foundation depth. For the purposes of this report, the foundation depth has been assumed to be 15 feet below the existing ground surface. This value takes into consideration the estimated mat foundation size, but should be reevaluated once foundation loads and dimensions become available.

7.11.3 The thickness of and reinforcement for the mat foundation should be designed by the project structural engineer.

7.11.4 For seismic design purposes, a coefficient of friction of 0.4 may be utilized between the concrete mat and alluvium without a moisture barrier, and 0.15 for slabs underlain by a moisture barrier.

7.12 Foundation Settlement – Tower Structure

7.12.1 The maximum expected static settlement for conventional foundations deriving support in the recommended bearing materials and designed with a maximum bearing pressure of 6,500 psf is estimated to be less than 1½ inches and occur below the heaviest loaded structural element. Settlement of the foundation system is expected to occur on initial application of loading. Differential settlement is not expected to exceed ¾ inch over a distance of 20 feet.

7.12.2 The maximum expected static settlement for a mat foundation deriving support in competent alluvial soils and utilizing a maximum allowable bearing pressure of 6,500 psf is estimated to be less than 2½ inches and occur below the central portion of the mat. The differential settlement between the center and corner of the mat is estimated to be less than 1¼ inches.

7.12.3 Differential settlement between the mat foundations and conventional foundations is expected to be less than 1½ inches.

7.12.4 Once the design and foundation loading configurations for the proposed structures proceeds to a more finalized plan, the estimated settlements presented in this report should be reviewed and revised, if necessary. If the final foundation loading configurations are greater than the assumed loading conditions, the potential for settlement should be reevaluated by this office.
7.13 Miscellaneous Foundations

7.13.1 Foundations for small outlying structures, such as block walls less than 6 feet in height, planter walls or trash enclosures which will not be tied to the proposed structure may be supported on conventional foundations bearing on a minimum of 12 inches of newly placed engineered fill which extends laterally at least 12 inches beyond the foundation area. Where excavation and compaction cannot be performed or is undesirable, such as adjacent to property lines, foundations may derive support in the undisturbed alluvial soils, and should be deepened as necessary to maintain a minimum 12 inch embedment into the recommended bearing materials. The design team and contractor should be aware that the depth to alluvial soils as encountered during our field exploration varied from the ground surface to 3½ feet below the existing ground surface, and deeper fill may exist between excavations and in other portions of the site that were not directly explored.

7.13.2 If the soils exposed in the excavation bottom are soft, compaction of the soft soils will be required prior to placing steel or concrete. Compaction of the foundation excavation bottom is typically accomplished with a compaction wheel or mechanical whacker and must be observed and approved by a Geocon representative. Miscellaneous foundations may be designed for a bearing value of 1,500 psf, and should be a minimum of 12 inches in width, 18 inches in depth below the lowest adjacent grade and 12 inches into the recommended bearing material. The allowable bearing pressure may be increased by up to one-third for transient loads due to wind or seismic forces.

7.13.3 Foundation excavations should be observed and approved in writing by the Geotechnical Engineer (a representative of Geocon West, Inc.), prior to the placement of reinforcing steel and concrete to verify that the excavations and exposed soil conditions are consistent with those anticipated.

7.14 Lateral Design

7.14.1 Resistance to lateral loading may be provided by friction acting at the base of foundations, slabs and by passive earth pressure. An allowable coefficient of friction of 0.4 may be used with the dead load forces in the competent alluvial soils or in properly compacted engineered fill.

7.14.2 Passive earth pressure for the sides of foundations and slabs poured against properly compacted engineered fill or competent alluvial soils may be computed as an equivalent fluid having a density of 270 pcf with a maximum earth pressure of 2,700 psf. When combining passive and friction for lateral resistance, the passive component should be reduced by one-third.
7.15 **Concrete Slabs-on-Grade**

7.15.1 Concrete slabs-on-grade subject to vehicle loading should be designed in accordance with the recommendations in the *Preliminary Pavement Recommendations* section of this report (Section 7.15).

7.15.2 Subsequent to the recommended grading, concrete slabs-on-grade for structures, not subject to vehicle loading, should be a minimum of 4 inches thick and minimum slab reinforcement should consist of No. 4 steel reinforcing bars placed 16 inches on center in both horizontal directions. Steel reinforcing should be positioned vertically near the slab midpoint.

7.15.3 Slabs-on-grade at the ground surface that may receive moisture-sensitive floor coverings or may be used to store moisture-sensitive materials should be underlain by a vapor retarder placed directly beneath the slab. The vapor retarder and acceptable permeance should be specified by the project architect or developer based on the type of floor covering that will be installed. The vapor retarder design should be consistent with the guidelines presented in Section 9.3 of the American Concrete Institute’s (ACI) Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials (ACI 302.2R-06) and should be installed in general conformance with ASTM E 1643 (latest edition) and the manufacturer’s recommendations. A minimum thickness of 15 mils extruded polyolefin plastic is recommended; vapor retarders which contain recycled content or woven materials are not recommended. The vapor retarder should have a permeance of less than 0.01 perms demonstrated by testing before and after mandatory conditioning is recommended. The vapor retarder should be installed in direct contact with the concrete slab with proper perimeter seal. If the Los Angeles Green Building Code requirements apply to this project, the vapor retarder should be underlain by 4 inches of clean aggregate. It is important that the vapor retarder be puncture resistant since it will be in direct contact with angular gravel. As an alternative to the clean aggregate suggested in the Green Building Code, it is our opinion that the concrete slab-on-grade may be underlain by a vapor retarder over 4 inches of clean sand (sand equivalent greater than 30), since the sand will serve a capillary break and will minimize the potential for punctures and damage to the vapor barrier.

7.15.4 Due to the nature of the proposed design and intent for a subterranean level, waterproofing of subterranean walls and slabs is suggested. Particular care should be taken in the design and installation of waterproofing to avoid moisture problems, or actual water seepage into the structure through any normal shrinkage cracks which may develop in the concrete walls, floor slab, foundations and/or construction joints. The design and inspection of the waterproofing is not the responsibility of the geotechnical engineer. A waterproofing consultant should be retained in order to recommend a product or method, which would provide protection to subterranean walls, floor slabs and foundations.
7.15.5 For seismic design purposes, a coefficient of friction of 0.4 may be utilized between concrete slabs and subgrade soils without a moisture barrier, and 0.15 for slabs underlain by a moisture barrier.

7.15.6 Exterior slabs for walkways or flatwork, not subject to traffic loads, should be at least 4 inches thick and reinforced with No. 3 steel reinforcing bars placed 18 inches on center in both horizontal directions, positioned near the slab midpoint. Prior to construction of slabs, the upper 12 inches of subgrade should be moistened to optimum moisture content and properly compacted to at least 95 percent relative compaction, as determined by ASTM Test Method D 1557 (latest edition). Crack control joints should be spaced at intervals not greater than 10 feet and should be constructed using saw-cuts or other methods as soon as practical following concrete placement. Crack control joints should extend a minimum depth of one-fourth the slab thickness. The project structural engineer should design construction joints as necessary.

7.15.7 The recommendations of this report are intended to reduce the potential for cracking of slabs due to settlement. However, even with the incorporation of the recommendations presented herein, foundations, stucco walls, and slabs-on-grade may exhibit some cracking due to minor soil movement and/or concrete shrinkage. The occurrence of concrete shrinkage cracks is independent of the supporting soil characteristics. Their occurrence may be reduced and/or controlled by limiting the slump of the concrete, proper concrete placement and curing, and by the placement of crack control joints at periodic intervals, in particular, where re-entrant slab corners occur.

7.16 Preliminary Pavement Recommendations

7.16.1 Where new paving is to be placed, it is recommended that all existing fill and soft or unsuitable alluvial materials be excavated and properly recompacted for paving support. The client should be aware that excavation and compaction of all existing artificial fill and soft alluvium in the area of new paving is not required; however, paving constructed over existing unsuitable material may experience increased settlement and/or cracking, and may therefore have a shorter design life and increased maintenance costs. As a minimum, the upper twelve inches of paving subgrade should be scarified, moisture conditioned to optimum moisture content, and properly compacted to at least 95 percent relative compaction, as determined by ASTM Test Method D 1557 (latest edition).

7.16.2 The following pavement sections are based on an assumed R-Value of 35. Once site grading activities are complete an R-Value should be obtained by laboratory testing to confirm the properties of the soils serving as paving subgrade, prior to placing pavement.
7.16.3 The Traffic Indices listed below are estimates. Geocon does not practice in the field of traffic engineering. The actual Traffic Index for each area should be determined by the project civil engineer. If pavement sections for Traffic Indices other than those listed below are required, Geocon should be contacted to provide additional recommendations. Pavement thicknesses were determined following procedures outlined in the California Highway Design Manual (Caltrans). It is anticipated that the majority of traffic will consist of automobile and large truck traffic.

PRELIMINARY PAVEMENT DESIGN SECTIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Estimated Traffic Index (TI)</th>
<th>Asphalt Concrete (inches)</th>
<th>Class 2 Aggregate Base (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile Parking And Driveways</td>
<td>4.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Trash Truck & Fire Lanes</td>
<td>7.0</td>
<td>4.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

7.16.4 Asphalt concrete should conform to Section 203-6 of the “Standard Specifications for Public Works Construction” (Green Book). Class 2 aggregate base materials should conform to Section 26-1.02A of the “Standard Specifications of the State of California, Department of Transportation” (Caltrans). The use of Crushed Miscellaneous Base in lieu of Class 2 aggregate base is acceptable. Crushed Miscellaneous Base should conform to Section 200-2.4 of the “Standard Specifications for Public Works Construction” (Green Book).

7.16.5 Unless specifically designed and evaluated by the project structural engineer, where exterior concrete paving will be utilized for support of vehicles, it is recommended that the concrete be a minimum of 6 inches of concrete reinforced with No. 3 steel reinforcing bars placed 18 inches on center in both horizontal directions. Concrete paving supporting vehicular traffic should be underlain by a minimum of 4 inches of aggregate base and a properly compacted subgrade. The subgrade and base material should be compacted to 95 percent relative compaction as determined by ASTM Test Method D 1557 (latest edition).

7.16.6 The performance of pavements is highly dependent upon providing positive surface drainage away from the edge of pavements. Ponding of water on or adjacent to the pavement will likely result in saturation of the subgrade materials and subsequent cracking, subsidence and pavement distress. If planters are planned adjacent to paving, it is recommended that the perimeter curb be extended at least 12 inches below the bottom of the aggregate base to minimize the introduction of water beneath the paving.
7.17 Retaining Walls Design

7.17.1 The recommendations presented below are generally applicable to the design of rigid concrete or masonry retaining walls having a maximum height of 12 feet. In the event that walls significantly higher than 12 feet are planned, Geocon should be contacted for additional recommendations.

7.17.2 Retaining wall foundations may be designed in accordance with the recommendations provided in the Foundation Design sections of this report.

7.17.3 Retaining walls with a level backfill surface that are not restrained at the top should be designed utilizing a triangular distribution of pressure (active pressure) of 42 pcf.

7.17.4 Restrained walls are those that are not allowed to rotate more than 0.001H (where H equals the height of the retaining portion of the wall in feet) at the top of the wall. Where walls are restrained from movement at the top, walls may be designed utilizing a triangular distribution of pressure (at-rest pressure) of 63 pcf. Calculation of the recommended retaining wall pressures is provided as Figure 5.

7.17.5 The wall pressures provided above assume that the retaining wall will be properly drained preventing the buildup of hydrostatic pressure. If retaining wall drainage is not implemented, the equivalent fluid pressure to be used in design of undrained walls is 90 pcf. The value includes hydrostatic pressures plus buoyant lateral earth pressures.

7.17.6 Additional active pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent structures and should be designed for each condition as the project progresses. Recommendations for the incorporation of surcharges are provided in Section 7.28 of this report. Once the design becomes more finalized, an addendum letter can be prepared revising recommendations and addressing specific surcharge conditions throughout the project, if necessary.

7.17.7 In addition to the recommended earth pressure, the upper 10 feet of the subterranean wall adjacent to the street and parking lot should be designed to resist a uniform lateral pressure of 100 psf, acting as a result of an assumed 300 psf surcharge behind the walls due to normal street traffic. If the traffic is kept back at least 10 feet from the subterranean walls, the traffic surcharge may be neglected.

7.17.8 Seismic lateral forces should be incorporated into the design as necessary, and recommendations for seismic lateral forces are presented below.
7.18 Dynamic (Seismic) Lateral Forces

7.18.1 The structural engineer should determine the seismic design category for the project in accordance with Section 1613 of the CBC. If the project possesses a seismic design category of D, E, or F, proposed retaining walls in excess of 6 feet in height should be designed with seismic lateral pressure (Section 1803.5.12 of the 2016 CBC).

7.18.2 A seismic load of 10 pcf should be used for design of walls that support more than 6 feet of backfill in accordance with Section 1803.5.12 of the 2016 CBC. The seismic load is applied as an equivalent fluid pressure along the height of the wall and the calculated loads result in a maximum load exerted at the base of the wall and zero at the top of the wall. This seismic load should be applied in addition to the active earth pressure. The earth pressure is based on half of two thirds of PGA_m calculated from ASCE 7-10 Section 11.8.3.

7.19 Retaining Wall Drainage

7.19.1 Retaining walls should be provided with a drainage system. At the base of the drain system, a subdrain covered with a minimum of 12 inches of gravel should be installed, and a compacted fill blanket or other seal placed at the surface (see Figure 6). The clean bottom and subdrain pipe, behind a retaining wall, should be observed by the Geotechnical Engineer (a representative of Geocon), prior to placement of gravel or compacting backfill.

7.19.2 As an alternative, a plastic drainage composite such as Miradrain or equivalent may be installed in continuous, 4-foot wide columns along the entire back face of the wall, at 8 feet on center. The top of these drainage composite columns should terminate approximately 18 inches below the ground surface, where either hardscape or a minimum of 18 inches of relatively cohesive material should be placed as a cap (see Figure 7). These vertical columns of drainage material would then be connected at the bottom of the wall to a collection panel or a 1-cubic-foot rock pocket drained by a 4-inch subdrain pipe.

7.19.3 Subdrainage pipes at the base of the retaining wall drainage system should outlet to an acceptable location via controlled drainage structures. Drainage should not be allowed to flow uncontrolled over descending slopes.

7.19.4 Moisture affecting below grade walls is one of the most common post-construction complaints. Poorly applied or omitted waterproofing can lead to efflorescence or standing water. Particular care should be taken in the design and installation of waterproofing to avoid moisture problems, or actual water seepage into the structure through any normal shrinkage cracks which may develop in the concrete walls, floor slab, foundations and/or construction joints. The design and inspection of the waterproofing is not the responsibility of the geotechnical engineer. A waterproofing consultant should be retained in order to recommend a product or method, which would provide protection to subterranean walls, floor slabs and foundations.
7.20 Elevator Pit Design

7.20.1 The elevator pit slab and retaining wall should be designed by the project structural engineer. Elevator pit walls may be designed in accordance with the recommendations in the *Retaining Wall Design* sections of this report (see Section 7.16).

7.20.2 Additional active pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent foundations and should be designed for each condition as the project progresses.

7.20.3 If retaining wall drainage is to be provided, the drainage system should be designed in accordance with the *Retaining Wall Drainage* section of this report (see Section 7.18).

7.20.4 It is suggested that the exterior walls and slab be waterproofed to prevent excessive moisture inside of the elevator pit. Waterproofing design and installation is not the responsibility of the geotechnical engineer.

7.21 Elevator Piston

7.21.1 If a plunger-type elevator piston is installed for this project, a deep drilled excavation will be required. It is important to verify that the drilled excavation is not situated immediately adjacent to a foundation or shoring pile, or the drilled excavation could compromise the existing foundation or pile support, especially if the drilling is performed subsequent to the foundation or pile construction.

7.21.2 Due to the preliminary nature of the project at this time, it is unknown if a plunger-type elevator piston will be included for this project. If in the future it is determined that a plunger-type elevator piston will be constructed, the location of the proposed elevator should be reviewed by the Geotechnical Engineer to evaluate the setback from foundations and shoring piles. Additional recommendations will be provided as necessary.

7.21.3 Caving is anticipated especially where granular soils are encountered. The contractor should be prepared to use casing and should have it readily available at the commencement of drilling activities. Continuous observation of the drilling and installation of the elevator piston by the Geotechnical Engineer (a representative of Geocon West, Inc.) is required.

7.21.4 The annular space between the piston casing and drilled excavation wall should be filled with a minimum of 1½-sack slurry pumped from the bottom up. As an alternative, pea gravel may be utilized. The use of soil to backfill the annular space is not acceptable.
7.22 Temporary Excavations

7.22.1 Excavations on the order of 6 feet in height are anticipated for excavation and grading associated with the parking structure, and excavations on the order of 15 feet in height are anticipated for excavation and construction of the proposed subterranean level, including foundation excavations. The excavations are expected to expose artificial fill and alluvial soils, which may be subject to caving where granular soils are encountered. Vertical excavations up to 5 feet in height may be attempted where loose soils or caving sands are not present, and where not surcharged by adjacent traffic or structures.

7.22.2 Vertical excavations greater than 5 feet will require sloping and/or shoring measures in order to provide a stable excavation. Where sufficient space is available, temporary unsurcharged embankments could be sloped back at a uniform 1:1 slope gradient or flatter, up to maximum height of 12 feet. A uniform slope does not have a vertical portion.

7.22.3 Excavations in close proximity to an adjacent property line and/or structure will require special excavation measures such as slot-cutting or shoring in order to maintain lateral support of offsite improvements. Vertical excavation along a property line should not exceed 2 feet in height. Recommendations for slot-cutting and shoring are provided below. 7.22.3

Where temporary construction slopes are utilized, the top of the slope should be barricaded to prevent vehicles and storage loads at the top of the slope within a horizontal distance equal to the height of the slope. If the temporary construction embankments are to be maintained during the rainy season, berms are suggested along the tops of the slopes where necessary to prevent runoff water from entering the excavation and eroding the slope faces. Geocon personnel should inspect the soils exposed in the cut slopes during excavation so that modifications of the slopes can be made if variations in the soil conditions occur. All excavations should be stabilized within 30 days of initial excavation.

7.23 Slot Cutting

7.23.1 The slot-cutting method employs the earth as a buttress and allows the earth excavation to proceed in phases. Where slot-cutting is used for foundation construction, the proposed construction techniques should be discussed with the structural engineer so that appropriate modifications can be made to the foundation design, such as additional reinforcing or details for doweling.
7.23.2 Where insufficient space is available to perform uniform 1:1 sloped excavations along a property line, or where vertical excavation in excess of 2 feet in height is required along a property line, slot-cutting methods can be used. It is recommended that the initial temporary excavation along the property line be sloped back at a uniform 1:1 (H:V) slope gradient or flatter for excavation of the existing soils to the necessary depth. The temporary excavation should not extend below the surcharge area of any adjacent foundations. The surcharge area may be defined by a 1:1 projection down and away from the bottom of an existing foundation. The temporary slope may then be excavated using the slot-cutting (see illustration below).

7.23.3 Alternate "A" slots of 8 feet in width may be worked. The remaining earth buttresses ("B" and "C" slots) should also be 8 feet in width. The wall, foundation, or backfill should be completed in the "A" slots to a point where support of the offsite property and/or any existing structures is restored before the "B" slots are excavated. After completing the wall, foundation, or backfill in the "B" slots, finally the "C" slots may be excavated. Slot-cutting is not recommended for vertical excavations greater than 6 feet in height, nor where surcharge loads are present. A slot-cut calculation is provided on the following page.
Slot Cut Calculation

Input:
- **Height of Slots (H)**: 6.0 feet
- **Unit Weight of Soils (γ)**: 125.0 pcf
- **Friction Angle of Soils (φ)**: 32.0 degrees
- **Cohesion of Soils (c)**: 100.0 psf

Design Equations

- \(b = \frac{H}{\tan(\alpha)} \)
- \(A = 0.5 \times H \times b \)
- \(W = 0.5 \times H \times b \times \gamma \) (per lineal foot of slot width)
- \(F_1 = d \times W \times (\sin(\alpha)) \)
- \(R_1 = d \times W \times (\cos(\phi)) \times (\tan(\phi) + c \times b) \)
- \(R_2 = 2 \times (0.5 \times H \times b \times c) \)
- \(F_S = \frac{\text{Resistance Force}}{\text{Driving Force}} \)

Surcharge Pressure:
- **Line Load** \((q_L)\): 0.0 plf
- **Distance Away from Edge of Excavation** \((X)\): 0.0 feet

Critical Slot Width with Factor of Safety equal or exceeding 1.25:

- **d_{allow} = 6.6 feet**

<table>
<thead>
<tr>
<th>Failure Angle (α)</th>
<th>Width of Failure Wedge (b)</th>
<th>Area of Failure Wedge (A)</th>
<th>Weight of Wedge + Surcharge per lineal foot of Slot Width (W)</th>
<th>Driving Force per lineal foot of Slot Width</th>
<th>Resisting Force per lineal foot of Slot Width</th>
<th>Resisting Force Side Resistance</th>
<th>Allowable Width of Slots (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>6.0 feet</td>
<td>18</td>
<td>2250.0 lbs/lineal foot</td>
<td>1591.0 lbs/lineal foot</td>
<td>1842.7 lbs/lineal foot</td>
<td>3600.0 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>46</td>
<td>5.8 feet</td>
<td>17</td>
<td>2172.8 lbs/lineal foot</td>
<td>1563.0 lbs/lineal foot</td>
<td>1777.2 lbs/lineal foot</td>
<td>3476.5 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>47</td>
<td>5.6 feet</td>
<td>16</td>
<td>2098.2 lbs/lineal foot</td>
<td>1534.5 lbs/lineal foot</td>
<td>1714.5 lbs/lineal foot</td>
<td>3357.1 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>48</td>
<td>5.4 feet</td>
<td>16</td>
<td>2025.9 lbs/lineal foot</td>
<td>1505.5 lbs/lineal foot</td>
<td>1654.5 lbs/lineal foot</td>
<td>3241.5 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>49</td>
<td>5.2 feet</td>
<td>16</td>
<td>1955.9 lbs/lineal foot</td>
<td>1476.1 lbs/lineal foot</td>
<td>1596.8 lbs/lineal foot</td>
<td>3129.4 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>50</td>
<td>5.0 feet</td>
<td>15</td>
<td>1888.0 lbs/lineal foot</td>
<td>1446.3 lbs/lineal foot</td>
<td>1541.6 lbs/lineal foot</td>
<td>3020.8 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>51</td>
<td>4.9 feet</td>
<td>15</td>
<td>1822.0 lbs/lineal foot</td>
<td>1416.0 lbs/lineal foot</td>
<td>1488.6 lbs/lineal foot</td>
<td>2915.2 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>52</td>
<td>4.7 feet</td>
<td>14</td>
<td>1757.9 lbs/lineal foot</td>
<td>1365.2 lbs/lineal foot</td>
<td>1437.7 lbs/lineal foot</td>
<td>2812.6 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>53</td>
<td>4.5 feet</td>
<td>14</td>
<td>1695.5 lbs/lineal foot</td>
<td>1354.1 lbs/lineal foot</td>
<td>1388.9 lbs/lineal foot</td>
<td>2712.8 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>54</td>
<td>4.4 feet</td>
<td>13</td>
<td>1634.7 lbs/lineal foot</td>
<td>1322.5 lbs/lineal foot</td>
<td>1342.1 lbs/lineal foot</td>
<td>2615.6 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>55</td>
<td>4.2 feet</td>
<td>13</td>
<td>1575.5 lbs/lineal foot</td>
<td>1290.5 lbs/lineal foot</td>
<td>1297.1 lbs/lineal foot</td>
<td>2520.7 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>56</td>
<td>4.0 feet</td>
<td>12</td>
<td>1517.6 lbs/lineal foot</td>
<td>1258.2 lbs/lineal foot</td>
<td>1254.0 lbs/lineal foot</td>
<td>2428.2 lbs</td>
<td>7.6 feet</td>
</tr>
<tr>
<td>57</td>
<td>3.9 feet</td>
<td>12</td>
<td>1461.2 lbs/lineal foot</td>
<td>1225.4 lbs/lineal foot</td>
<td>1212.7 lbs/lineal foot</td>
<td>2337.9 lbs</td>
<td>7.3 feet</td>
</tr>
<tr>
<td>58</td>
<td>3.7 feet</td>
<td>11</td>
<td>1406.0 lbs/lineal foot</td>
<td>1192.3 lbs/lineal foot</td>
<td>1173.1 lbs/lineal foot</td>
<td>2249.5 lbs</td>
<td>7.1 feet</td>
</tr>
<tr>
<td>59</td>
<td>3.6 feet</td>
<td>11</td>
<td>1351.9 lbs/lineal foot</td>
<td>1158.8 lbs/lineal foot</td>
<td>1135.1 lbs/lineal foot</td>
<td>2163.1 lbs</td>
<td>6.9 feet</td>
</tr>
<tr>
<td>60</td>
<td>3.5 feet</td>
<td>10</td>
<td>1299.0 lbs/lineal foot</td>
<td>1125.0 lbs/lineal foot</td>
<td>1098.7 lbs/lineal foot</td>
<td>2078.5 lbs</td>
<td>6.8 feet</td>
</tr>
<tr>
<td>61</td>
<td>3.3 feet</td>
<td>10</td>
<td>1247.2 lbs/lineal foot</td>
<td>1090.8 lbs/lineal foot</td>
<td>1063.8 lbs/lineal foot</td>
<td>1995.5 lbs</td>
<td>6.7 feet</td>
</tr>
<tr>
<td>62</td>
<td>3.2 feet</td>
<td>10</td>
<td>1196.3 lbs/lineal foot</td>
<td>1056.3 lbs/lineal foot</td>
<td>1030.5 lbs/lineal foot</td>
<td>1914.2 lbs</td>
<td>6.6 feet</td>
</tr>
<tr>
<td>63</td>
<td>3.1 feet</td>
<td>9</td>
<td>1146.4 lbs/lineal foot</td>
<td>1021.5 lbs/lineal foot</td>
<td>998.6 lbs/lineal foot</td>
<td>1834.3 lbs</td>
<td>6.6 feet</td>
</tr>
<tr>
<td>64</td>
<td>2.9 feet</td>
<td>9</td>
<td>1097.4 lbs/lineal foot</td>
<td>986.3 lbs/lineal foot</td>
<td>968.2 lbs/lineal foot</td>
<td>1755.8 lbs</td>
<td>6.6 feet</td>
</tr>
<tr>
<td>65</td>
<td>2.8 feet</td>
<td>8</td>
<td>1049.2 lbs/lineal foot</td>
<td>950.9 lbs/lineal foot</td>
<td>939.1 lbs/lineal foot</td>
<td>1678.7 lbs</td>
<td>6.7 feet</td>
</tr>
<tr>
<td>66</td>
<td>2.7 feet</td>
<td>8</td>
<td>1001.8 lbs/lineal foot</td>
<td>915.2 lbs/lineal foot</td>
<td>911.4 lbs/lineal foot</td>
<td>1602.8 lbs</td>
<td>6.9 feet</td>
</tr>
<tr>
<td>67</td>
<td>2.5 feet</td>
<td>8</td>
<td>956.1 lbs/lineal foot</td>
<td>879.1 lbs/lineal foot</td>
<td>885.0 lbs/lineal foot</td>
<td>1528.1 lbs</td>
<td>7.1 feet</td>
</tr>
<tr>
<td>68</td>
<td>2.4 feet</td>
<td>7</td>
<td>909.1 lbs/lineal foot</td>
<td>842.9 lbs/lineal foot</td>
<td>859.9 lbs/lineal foot</td>
<td>1454.5 lbs</td>
<td>7.5 feet</td>
</tr>
<tr>
<td>69</td>
<td>2.3 feet</td>
<td>7</td>
<td>863.7 lbs/lineal foot</td>
<td>806.3 lbs/lineal foot</td>
<td>836.1 lbs/lineal foot</td>
<td>1381.9 lbs</td>
<td>8.0 feet</td>
</tr>
<tr>
<td>70</td>
<td>2.2 feet</td>
<td>7</td>
<td>818.9 lbs/lineal foot</td>
<td>769.5 lbs/lineal foot</td>
<td>813.5 lbs/lineal foot</td>
<td>1310.3 lbs</td>
<td>8.0 feet</td>
</tr>
</tbody>
</table>

Width of Slots to achieve a minimum of 1.25 Factor of Safety, with a Maximum Allowable Slot Width of 8-feet.
7.24 **Shoring – Soldier Pile Design and Installation**

7.24.1 The following information on the design and installation of shoring is preliminary. Review of the final shoring plans and specifications should be made by this office prior to bidding or negotiating with a shoring contractor.

7.24.2 One method of shoring would consist of steel soldier piles, placed in drilled holes and backfilled with concrete. The steel soldier piles may also be installed utilizing high frequency vibration. Where maximum excavation heights are less than 12 feet the soldier piles are typically designed as cantilevers. Where excavations exceed 12 feet or are surcharged, soldier piles may require lateral bracing utilizing drilled tie-back anchors or raker braces to maintain an economical steel beam size and prevent excessive deflection. The size of the steel beam, the need for lateral bracing, and the acceptable shoring deflection should be determined by the project shoring engineer.

7.24.3 The design embedment of the shoring pile toes must be maintained during excavation activities. The toes of the perimeter shoring piles should be deepened to take into account any required excavations necessary for foundations and/or adjacent drainage systems.

7.24.4 The proposed soldier piles may also be designed as permanent piles and may be utilized to underpin the existing offsite structures. The required pile depth, dimension, spacing and underpinning connection to existing offsite foundation should be determined and designed by the project structural and shoring engineers. All piles utilized for shoring can also be incorporated into a permanent retaining wall system (shotcrete wall) provided they are designed in accordance with the earth pressure provided in the *Retaining Wall Design* section of this report (see Section 7.16).

7.24.5 Drilled cast-in-place soldier piles should be placed no closer than 2 diameters on center. The minimum diameter of the piles is 18 inches. Structural concrete should be used for the soldier piles below the excavation; lean-mix concrete may be employed above that level. As an alternative, lean-mix concrete may be used throughout the pile where the reinforcing consists of a wideflange section. The slurry must be of sufficient strength to impart the lateral bearing pressure developed by the wideflange section to the soil. For design purposes, an allowable passive value for the soils below the bottom plane of excavation may be assumed to be 270 psf per foot. Where piles are installed by vibration techniques, the passive pressure may be assumed to mobilize across a width equal to the two times the dimension of the beam flange. The allowable passive value may be doubled for isolated piles spaced a minimum of three times the pile diameter. To develop the full lateral value, provisions should be implemented to assure firm contact between the soldier piles and the undisturbed soils.
7.24.6 Groundwater was not encountered during site exploration. However, local seepage may be encountered during excavations for the proposed soldier piles, especially if conducted during the rainy season. If more than 6 inches of water is present in the bottom of the excavation, a tremie is required to place the concrete into the bottom of the hole. A tremie should consist of a rigid, water-tight tube having a diameter of not less than 6 inches with a hopper at the top. The tube should be equipped with a device that will close the discharge end and prevent water from entering the tube while it is being charged with concrete. The tremie should be supported so as to permit free movement of the discharge end over the entire top surface of the work and to permit rapid lowering when necessary to retard or stop the flow of concrete. The discharge end should be closed at the start of the work to prevent water entering the tube and should be entirely sealed at all times, except when the concrete is being placed. The tremie tube should be kept full of concrete. The flow should be continuous until the work is completed and the resulting concrete seal should be monolithic and homogeneous. The tip of the tremie tube should always be kept about 5 feet below the surface of the concrete and definite steps and safeguards should be taken to insure that the tip of the tremie tube is never raised above the surface of the concrete.

7.24.7 A special concrete mix should be used for concrete to be placed below water. The design should provide for concrete with an unconfined compressive strength psi of 1,000 psi over the initial job specification. An admixture that reduces the problem of segregation of paste/aggregates and dilution of paste should be included. The slump should be commensurate to any research report for the admixture, provided that it should also be the minimum for a reasonable consistency for placing when water is present.

7.24.8 Caving is anticipated to occur where granular soils are encountered and the contractor should have casing available prior to commencement of pile excavation. When casing is used, extreme care should be employed so that the pile is not pulled apart as the casing is withdrawn. At no time should the distance between the surface of the concrete and the bottom of the casing be less than 5 feet. Although not encountered in our borings, cobbles and/or occasional boulders are common in this area of Los Angeles and may be encountered and the contractor should be prepared for this condition. Continuous observation of the drilling and pouring of the piles by the Geotechnical Engineer (a representative of Geocon West, Inc.), is required.

7.24.9 If a vibratory method of soldier pile installation is utilized, predrilling may be performed prior to installation of the steel beams. If predrilling is performed, it is recommended that the bore diameter be at least 2 inches smaller than the largest dimension of the pile to prevent excessive loss in the frictional component of the pile capacity. Predrilling should not be conducted below the proposed excavation bottom.
7.24.10 If a vibratory method is utilized, the owner should be aware of the potential risks associated with vibratory efforts, which typically involve inducing settlement within the vicinity of the pile which could result in a potential for damage to existing improvements in the area.

7.24.11 The level of vibration that results from the installation of the piles should not exceed a threshold where occupants of nearby structures are disturbed, despite higher vibration tolerances that a building may endure without deformation or damage. The main parameter used for vibration assessment is peak particle velocity in units of inch per second (in/sec). The acceptable range of peak particle velocity should be evaluated based on the age and condition of adjacent structures, as well as the tolerance of human response to vibration.

7.24.12 Based on Table 19 of the *Transportation and Construction Induced Vibration Guidance Manual* (Caltrans 2013), a continuous source of vibrations (ex. vibratory pile driving) which generates a maximum peak particle velocity of 0.5 in/sec is considered tolerable for modern industrial/commercial buildings and new residential structures. The Client should be aware that a lower value may be necessary if older or fragile structures are in the immediate vicinity of the site.

7.24.13 Vibrations should be monitored and record with seismographs during pile installation to detect the magnitude of vibration and oscillation experienced by adjacent structures. If the vibrations exceed the acceptable range during installation, the shoring contractor should modify the installation procedure to reduce the values to within the acceptable range. Vibration monitoring is not the responsibility of the Geotechnical Engineer.

7.24.14 Geocon does not practice in the field of vibration monitoring. If construction techniques will be implemented, it is recommended that qualified consultant be retained to provide site specific recommendations for vibration thresholds and monitoring.

7.24.15 The frictional resistance between the soldier piles and retained soil may be used to resist the vertical component of the anchor load. The coefficient of friction may be taken as 0.4 based on uniform contact between the steel beam and lean-mix concrete and retained earth. The portion of soldier piles below the plane of excavation may also be employed to resist the downward loads. The downward capacity may be determined using a frictional resistance of 450 psf.

7.24.16 Due to the nature of the site soils, it is expected that continuous lagging between soldier piles will be required. However, it is recommended that the exposed soils be observed by the Geotechnical Engineer (a representative of Geocon West, Inc.), to verify the presence of any competent, cohesive soils and the areas where lagging may be omitted.
7.24.17 The time between lagging excavation and lagging placement should be as short as possible. Soldier piles should be designed for the full-anticipated pressures. Due to arching in the soils, the pressure on the lagging will be less. It is recommended that the lagging be designed for the full design pressure but be limited to a maximum of 400 psf.

7.24.18 For the design of shoring, it is recommended that an equivalent fluid pressure be utilized for design. A trapezoidal distribution of lateral earth pressure may be used where shoring will be restrained by bracing or tie backs. The recommended active and trapezoidal pressure are provided in the following table. A diagram depicting the trapezoidal pressure distribution of lateral earth pressure is provided below the table. Calculation of the recommended shoring pressures is provided as Figure 8.

<table>
<thead>
<tr>
<th>HEIGHT OF SHORING (FEET)</th>
<th>EQUIVALENT FLUID PRESSURE (Pounds Per Cubic Foot) (ACTIVE PRESSURE)</th>
<th>EQUIVALENT FLUID PRESSURE (Pounds Per Square Foot per Foot) Active Trapezoidal (Where H is the height of the shoring in feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 15</td>
<td>36</td>
<td>23H</td>
</tr>
</tbody>
</table>

Trapezoidal Distribution of Pressure

7.24.19 It is very important to note that active pressures can only be achieved when movement in the soil (earth wall) occurs. If movement in the soil is not acceptable, such as adjacent to an existing structure, an at-rest pressure of 57 pcf should be considered for design purposes.

7.24.20 Where a combination of sloped embankment and shoring is utilized, the pressure will be greater and must be determined for each combination. Additional active pressure should be added for a surcharge condition due to slopes, vehicular traffic or adjacent structures and should be designed for each condition. The surcharge pressure should be evaluated in accordance with the recommendations in Section 7.28 of this report.
7.24.21 In addition to the recommended earth pressure, the upper 10 feet of the shoring adjacent to the street or driveway areas should be designed to resist a uniform lateral pressure of 100 psf, acting as a result of an assumed 300 psf surcharge behind the shoring due to normal street traffic. If the traffic is kept back at least 10 feet from the shoring, the traffic surcharge may be neglected.

7.24.22 It is difficult to accurately predict the amount of deflection of a shored embankment. It should be realized that some deflection will occur. It is recommended that the deflection be minimized to prevent damage to existing structures and adjacent improvements. Where public right-of-ways are present or adjacent offsite structures do not surcharge the shoring excavation, the shoring deflection should be limited to less than 1 inch at the top of the shored embankment. Where offsite structures are within the shoring surcharge area it is recommended that the beam deflection be limited to less than 1/2 inch at the elevation of the adjacent offsite foundation, and no deflection at all if deflections will damage existing structures. The allowable deflection is dependent on many factors, such as the presence of structures and utilities near the top of the embankment, and will be assessed and designed by the project shoring engineer.

7.24.23 Some means of monitoring the performance of the shoring system is suggested. The monitoring should consist of periodic surveying of the lateral and vertical locations of the tops of all soldier piles and the lateral movement along the entire lengths of selected soldier piles.

7.24.24 Due to the depth of the excavation and proximity to adjacent structures, it is suggested that prior to excavation the existing improvements be inspected to document the present condition. For documentation purposes, photographs should be taken of preconstruction distress conditions and level surveys of adjacent grade and pavement should be considered. During excavation activities, the adjacent structures and pavement should be periodically inspected for signs of distress. In the even that distress or settlement is noted, an investigation should be performed and corrective measures taken so that continued or worsened distress or settlement is mitigated. Documentation and monitoring of the offsite structures and improvements is not the responsibility of the geotechnical engineer.

7.25 Tie-Back Anchors

7.25.1 Temporary tie-back anchors may be used with the soldier pile wall system to resist lateral loads. Post-grouted friction anchors are recommended. For design purposes, it may be assumed that the active wedge adjacent to the shoring is defined by a plane drawn 28 degrees with the vertical through the bottom plane of the excavation. Friction anchors should extend a minimum of 20 feet beyond the potentially active wedge and to greater lengths if necessary to develop the desired capacities. The locations and depths of all offsite utilities should be thoroughly checked and incorporated into the drilling angle design for the tie-back anchors.
7.25.2 The capacities of the anchors should be determined by testing of the initial anchors as outlined in a following section. Only the frictional resistance developed beyond the active wedge would be effective in resisting lateral loads. Anchors should be placed at least 6 feet on center to be considered isolated. For preliminary design purposes, it is estimated that drilled friction anchors constructed without utilizing post-grouting techniques will develop average skin frictions as follows:

- 5 feet below the top of the excavation – 700 psf
- 10 feet below the top of the excavation – 950 psf

7.25.3 Depending on the techniques utilized, and the experience of the contractor performing the installation, a maximum allowable friction capacity of 3 kips per linear foot for post-grouted anchors (for a minimum 20-foot length beyond the active wedge) may be assumed for design purposes. Only the frictional resistance developed beyond the active wedge should be utilized in resisting lateral loads. Higher capacity assumptions may be acceptable, but must be verified by testing.

7.26 Anchor Installation

7.26.1 Tied-back anchors are typically installed between 20 and 40 degrees below the horizontal; however, occasionally alternative angles are necessary to avoid existing improvements and utilities. The locations and depths of all offsite utilities should be thoroughly checked prior to design and installation of the tie-back anchors. Caving of the anchor shafts, particularly within sand and gravel deposits or seepage zones, should be anticipated during installation and provisions should be implemented in order to minimize such caving. It is suggested that hollow-stem auger drilling equipment be used to install the anchors. The anchor shafts should be filled with concrete by pumping from the tip out, and the concrete should extend from the tip of the anchor to the active wedge. In order to minimize the chances of caving, it is recommended that the portion of the anchor shaft within the active wedge be backfilled with sand before testing the anchor. This portion of the shaft should be filled tightly and flush with the face of the excavation. The sand backfill should be placed by pumping; the sand may contain a small amount of cement to facilitate pumping.

7.27 Anchor Testing

7.27.1 All of the anchors should be tested to at least 150 percent of design load. The total deflection during this test should not exceed 12 inches. The rate of creep under the 150 percent test load should not exceed 0.1 inch over a 15-minute period in order for the anchor to be approved for the design loading.
7.27.2 At least 10 percent of the anchors should be selected for "quick" 200 percent tests and three additional anchors should be selected for 24-hour 200 percent tests. The purpose of the 200 percent tests is to verify the friction value assumed in design. The anchors should be tested to develop twice the assumed friction value. These tests should be performed prior to installation of additional tiebacks. Where satisfactory tests are not achieved on the initial anchors, the anchor diameter and/or length should be increased until satisfactory test results are obtained.

7.27.3 The total deflection during the 24-hour 200 percent test should not exceed 12 inches. During the 24-hour tests, the anchor deflection should not exceed 0.75 inches measured after the 200 percent test load is applied.

7.27.4 For the "quick" 200 percent tests, the 200 percent test load should be maintained for 30 minutes. The total deflection of the anchor during the 200 percent quick tests should not exceed 12 inches; the deflection after the 200 percent load has been applied should not exceed 0.25 inch during the 30-minute period.

7.27.5 After a satisfactory test, each anchor should be locked-off at the design load. This should be verified by rechecking the load in the anchor. The load should be within 10 percent of the design load. A representative of this firm should observe the installation and testing of the anchors.

7.28 Internal Bracing

7.28.1 Rakers may be utilized to brace the soldier piles in lieu of tieback anchors. The raker bracing could be supported laterally by temporary concrete footings (deadmen) or by the permanent, interior footings. For design of such temporary footings or deadmen, poured with the bearing surface normal to rakers inclined at 45 degrees, a bearing value of 2,000 psf may be used, provided the shallowest point of the footing is at least 1 foot below the lowest adjacent grade. The structural engineer should review the shoring plans to determine if raker footings conflict with the structural foundation system. The client should be aware that the utilization of rakers could significantly impact the construction schedule do to their intrusion into the construction site and potential interference with equipment.

7.29 Surcharge from Adjacent Structures and Improvements

7.29.1 Additional pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent structures and should be designed for each condition as the project progresses.

7.29.2 It is recommended that line-load surcharges from adjacent wall footings, use horizontal pressures generated from NAV-FAC DM 7.2. The governing equations are:
For $\frac{x}{H} \leq 0.4$

$$\sigma_H(z) = \frac{0.20 \times \left(\frac{z}{H}\right)^2}{0.16 + \left(\frac{z}{H}\right)^2} \times \frac{Q_L}{H^2}$$

and

For $\frac{x}{H} > 0.4$

$$\sigma_H(z) = \frac{1.28 \times \left(\frac{x}{H}\right)^2 \times \left(\frac{z}{H}\right)^2}{\left(\frac{x}{H}\right)^2 + \left(\frac{z}{H}\right)^2} \times \frac{Q_L}{H^2}$$

where x is the distance from the face of the excavation or wall to the vertical line-load, H is the distance from the bottom of the footing to the bottom of excavation or wall, z is the depth at which the horizontal pressure is desired, Q_L is the vertical line-load and $\sigma_H(z)$ is the horizontal pressure at depth z.

7.29.3 It is recommended that vertical point-loads, from construction equipment outriggers or adjacent building columns use horizontal pressures generated from NAV-FAC DM 7.2. The governing equations are:

For $\frac{x}{H} \leq 0.4$

$$\sigma_H(z) = \frac{0.28 \times \left(\frac{z}{H}\right)^2}{0.16 + \left(\frac{z}{H}\right)^2} \times \frac{Q_p}{H^2}$$

and

For $\frac{x}{H} > 0.4$

$$\sigma_H(z) = \frac{1.77 \times \left(\frac{x}{H}\right)^2 \times \left(\frac{z}{H}\right)^2}{\left(\frac{x}{H}\right)^2 + \left(\frac{z}{H}\right)^2} \times \frac{Q_p}{H^2}$$

then

$$\sigma'_H(z) = \sigma_H(z) \cos^2(1.1\theta)$$

where x is the distance from the face of the excavation/wall to the vertical point-load, H is distance from the outrigger/bottom of column footing to the bottom of excavation, z is the depth at which the horizontal pressure is desired, Q_p is the vertical point-load, $\sigma_H(z)$ is the horizontal pressure at depth z, Θ is the angle between a line perpendicular to the excavation/wall and a line from the point-load to location on the excavation/wall where the surcharge is being evaluated, and $\sigma_H(z)$ is the horizontal pressure at depth z.
7.30 Stormwater Infiltration

7.30.1 During the February 10, 2018, site exploration, boring B5 was utilized to perform percolation testing. The boring was advanced to the depths listed in the table below. Slotted casing was placed in the boring, and the annular space between the casing and excavation was filled with gravel. The boring was then filled with water to pre-saturate the soils. On February 10, 2018, the casing was refilled with water and percolation test readings were performed after repeated flooding of the cased excavation. Based on the test results, the average infiltration rate (adjusted percolation rate), for the earth materials encountered, is provided in the following table. The Reduction Factor (RF), to convert the field measured percolation rate to an infiltration rate, is also shown in the table below. This value has been calculated in accordance with the Boring Percolation Test Procedure in the County of Los Angeles Department of Public Works GMED Guidelines for Design, Investigation, and Reporting Low Impact Development Stormwater Infiltration (June 2017). Calculation of the percolation rate, reduction factor and infiltration rate are provided as Figure 9.

<table>
<thead>
<tr>
<th>Boring</th>
<th>Infiltration Depth (ft)</th>
<th>Measured Percolation Rate (in / hour)</th>
<th>Reduction Factor (RF)</th>
<th>Design Infiltration Rate (in / hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5</td>
<td>10-20</td>
<td>7.42</td>
<td>5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

7.30.2 The results of the percolation testing indicate that the soils at depths in the above table are conductive to infiltration. It is our opinion that the soil zone encountered at the depth and location as listed in the table above are suitable for infiltration of stormwater and will not induce excessive hydro-consolidation, will not create a perched groundwater condition, will not affect soil structure interaction of existing or proposed foundations due to expansive soils, will not saturate soils supported by existing or proposed retaining walls, and will not increase the potential for liquefaction. Resulting settlements are anticipated to be less than ¼ inch, if any.

7.30.3 Where infiltration systems will be utilized, it is recommended that a minimum 10-foot horizontal and vertical setback be maintained from existing or proposed foundations. The location and discharge of stormwater should also consider the setback requirements in LADBS Information Bulletin P/BC 2017-118.

7.30.4 Subsequent to the placement of the infiltration system, it is acceptable to backfill the resulting void space between the excavation sidewalls and the infiltration system with minimum two-sack slurry provided the slurry is not placed in the infiltration zone. It is recommended that pea gravel be utilized adjacent to the infiltration zone so communication of water to the soil is not hindered.
Due to the preliminary nature of the project at this time, the type of stormwater infiltration system and location of the stormwater infiltration systems has not yet been determined. The design drawings should be reviewed and approved by the Geotechnical Engineer. The installation of the stormwater infiltration system should be observed and approved by the Geotechnical Engineer (a representative of Geocon).

Surface Drainage

7.31.1 Proper surface drainage is critical to the future performance of the project. Uncontrolled infiltration of irrigation excess and storm runoff into the soils can adversely affect the performance of the planned improvements. Saturation of a soil can cause it to lose internal shear strength and increase its compressibility, resulting in a change in the original designed engineering properties. Proper drainage should be maintained at all times.

7.31.2 All site drainage should be collected and controlled in non-erosive drainage devices. Drainage should not be allowed to pond anywhere on the site, and especially not against any foundation or retaining wall. The site should be graded and maintained such that surface drainage is directed away from structures in accordance with 2016 CBC 1804.4 or other applicable standards. In addition, drainage should not be allowed to flow uncontrolled over any descending slope. Discharge from downspouts, roof drains and scuppers are not recommended onto unprotected soils within five feet of the building perimeter. Planters which are located adjacent to foundations should be sealed to prevent moisture intrusion into the soils providing foundation support. Landscape irrigation is not recommended within five feet of the building perimeter footings except when enclosed in protected planters.

7.31.3 Positive site drainage should be provided away from structures, pavement, and the tops of slopes to swales or other controlled drainage structures. The building pad and pavement areas should be fine graded such that water is not allowed to pond.

7.31.4 Landscaping planters immediately adjacent to paved areas are not recommended due to the potential for surface or irrigation water to infiltrate the pavement's subgrade and base course. Either a subdrain, which collects excess irrigation water and transmits it to drainage structures, or an impervious above-grade planter boxes should be used. In addition, where landscaping is planned adjacent to the pavement, it is recommended that consideration be given to providing a cutoff wall along the edge of the pavement that extends at least 12 inches below the base material.

Plan Review

7.32.1 Grading, foundation, and shoring plans should be reviewed by the Geotechnical Engineer (a representative of Geocon West, Inc.), prior to finalization to verify that the plans have been prepared in substantial conformance with the recommendations of this report and to provide additional analyses or recommendations.
LIMITATIONS AND UNIFORMITY OF CONDITIONS

1. The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that anticipated herein, Geocon West, Inc. should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by Geocon West, Inc.

2. This report is issued with the understanding that it is the responsibility of the owner, or of his representative, to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field.

3. The findings of this report are valid as of the date of this report. However, changes in the conditions of a property can occur with the passage of time, whether they are due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.

4. The firm that performed the geotechnical investigation for the project should be retained to provide testing and observation services during construction to provide continuity of geotechnical interpretation and to check that the recommendations presented for geotechnical aspects of site development are incorporated during site grading, construction of improvements, and excavation of foundations. If another geotechnical firm is selected to perform the testing and observation services during construction operations, that firm should prepare a letter indicating their intent to assume the responsibilities of project geotechnical engineer of record. A copy of the letter should be provided to the regulatory agency for their records. In addition, that firm should provide revised recommendations concerning the geotechnical aspects of the proposed development, or a written acknowledgement of their concurrence with the recommendations presented in our report. They should also perform additional analyses deemed necessary to assume the role of Geotechnical Engineer of Record.
LIST OF REFERENCES

LIST OF REFERENCES (Continued)

Los Angeles, City of, 1996, *Safety Element of the Los Angeles City General Plan*.

Los Angeles County Department of Public Works, 2018a, Ground Water Wells Website, http://dpw2.co.la.ca.us/website/wells/viewer.asp.

Retaining Wall Design with Transitioned Backfill
(Vector Analysis)

Input:
Retaining Wall Height (H) 12.00 feet
Slope Angle of Backfill (b) 0.0 degrees
Height of Slope above Wall (h₀) 0.0 feet
Horizontal Length of Slope (l₀) 0.0 feet
Total Height (Wall + Slope) (H) 12.0 feet
Unit Weight of Retained Soils (g) 125.0 pcf
Friction Angle of Retained Soils (θ) 32.0 degrees
Cohesion of Retained Soils (c) 100.0 psf
Factor of Safety (FS) 1.50
Factored Parameters:
(f₁₉₃) 22.6 degrees
(c₁₉₃) 66.7 psf

<table>
<thead>
<tr>
<th>Angle</th>
<th>Tension Crack Height (H₁)</th>
<th>Area of Wedge (A)</th>
<th>Weight of Wedge (W)</th>
<th>Length of Failure Plane (Lₐ)</th>
<th>Active Pressure (Pₐ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(H₂)</td>
<td>(A)</td>
<td>(W)</td>
<td>(Lₐ)</td>
<td>(Pₐ)</td>
</tr>
<tr>
<td>45</td>
<td>1.8</td>
<td>70</td>
<td>8791.1</td>
<td>14.4</td>
<td>2324.6</td>
</tr>
<tr>
<td>46</td>
<td>1.8</td>
<td>60</td>
<td>8490.7</td>
<td>14.2</td>
<td>2210.7</td>
</tr>
<tr>
<td>47</td>
<td>1.7</td>
<td>60</td>
<td>8214.5</td>
<td>14.0</td>
<td>2096.4</td>
</tr>
<tr>
<td>48</td>
<td>1.7</td>
<td>60</td>
<td>7937.9</td>
<td>13.8</td>
<td>1988.5</td>
</tr>
<tr>
<td>49</td>
<td>1.7</td>
<td>60</td>
<td>7666.7</td>
<td>13.7</td>
<td>1892.0</td>
</tr>
<tr>
<td>50</td>
<td>1.7</td>
<td>59</td>
<td>7406.6</td>
<td>13.5</td>
<td>1805.1</td>
</tr>
<tr>
<td>51</td>
<td>1.6</td>
<td>57</td>
<td>7151.0</td>
<td>13.3</td>
<td>1724.8</td>
</tr>
<tr>
<td>52</td>
<td>1.6</td>
<td>57</td>
<td>6901.0</td>
<td>13.2</td>
<td>1640.6</td>
</tr>
<tr>
<td>53</td>
<td>1.6</td>
<td>55</td>
<td>6655.8</td>
<td>13.0</td>
<td>1561.8</td>
</tr>
<tr>
<td>54</td>
<td>1.6</td>
<td>51</td>
<td>6421.4</td>
<td>12.8</td>
<td>1495.9</td>
</tr>
<tr>
<td>55</td>
<td>1.6</td>
<td>50</td>
<td>6180.5</td>
<td>12.7</td>
<td>1439.4</td>
</tr>
<tr>
<td>56</td>
<td>1.6</td>
<td>50</td>
<td>5962.7</td>
<td>12.5</td>
<td>1385.4</td>
</tr>
<tr>
<td>57</td>
<td>1.6</td>
<td>48</td>
<td>5740.7</td>
<td>12.4</td>
<td>1331.2</td>
</tr>
<tr>
<td>58</td>
<td>1.6</td>
<td>48</td>
<td>5533.3</td>
<td>12.3</td>
<td>1280.8</td>
</tr>
<tr>
<td>59</td>
<td>1.6</td>
<td>43</td>
<td>5310.2</td>
<td>12.1</td>
<td>1237.3</td>
</tr>
<tr>
<td>60</td>
<td>1.6</td>
<td>41</td>
<td>5101.3</td>
<td>12.0</td>
<td>1194.7</td>
</tr>
<tr>
<td>61</td>
<td>1.6</td>
<td>39</td>
<td>4906.1</td>
<td>11.9</td>
<td>1157.4</td>
</tr>
<tr>
<td>62</td>
<td>1.7</td>
<td>34</td>
<td>4694.6</td>
<td>11.7</td>
<td>1121.8</td>
</tr>
<tr>
<td>63</td>
<td>1.7</td>
<td>36</td>
<td>4490.5</td>
<td>11.6</td>
<td>1090.8</td>
</tr>
<tr>
<td>64</td>
<td>1.7</td>
<td>37</td>
<td>4301.6</td>
<td>11.5</td>
<td>1066.9</td>
</tr>
<tr>
<td>65</td>
<td>1.7</td>
<td>33</td>
<td>4109.7</td>
<td>11.3</td>
<td>1043.7</td>
</tr>
<tr>
<td>66</td>
<td>1.8</td>
<td>31</td>
<td>3920.6</td>
<td>11.2</td>
<td>1024.0</td>
</tr>
<tr>
<td>67</td>
<td>1.8</td>
<td>30</td>
<td>3734.2</td>
<td>11.1</td>
<td>1004.6</td>
</tr>
<tr>
<td>68</td>
<td>1.8</td>
<td>26</td>
<td>3552.2</td>
<td>11.0</td>
<td>986.8</td>
</tr>
<tr>
<td>69</td>
<td>1.9</td>
<td>27</td>
<td>3368.4</td>
<td>10.8</td>
<td>970.4</td>
</tr>
</tbody>
</table>
| 70 | 2.0 | 26 | 3188.7 | 10.7 | 953.8 | 2294.9 | 2494.3

Maximum Active Pressure Resultant

\[P_{A_{\text{max}}} = 3004.8 \text{ lbs/lineal foot} \]

Equivalent Fluid Pressure (per lineal foot of wall)

\[\text{EFP} = 2P_A/H^2 \]

\[\text{EFP} = 41.7 \text{ pcf} \]

Design Wall for an Equivalent Fluid Pressure:

\[42 \text{ pcf} \]

\[63 \text{ pcf} \]
3/4" CRUSHED ROCK
MIRAFI 140N OR EQUIVALENT FILTER FABRIC ENVELOPE
4" DIA. PERFORATED ABS OR ADS PIPE - EXTEND TO RETAINING WALL DRAINAGE SYSTEM
WATERPROOF WALL
PROPERLY COMPACTED BACKFILL
GROUND SURFACE
3/4" CRUSHED ROCK
FILTER FABRIC ENVELOPE MIRAFI 140N OR EQUIVALENT
4" DIA. PERFORATED ABS OR ADS PIPE - EXTEND TO DRAINAGE SYSTEM
WATERPROOF WALL
FOUNDATION
RETAILING WALL DRAIN DETAIL
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA
MARCH 2018
PROJECT NO. A9724-06-01
FIG. 6
RETAINING WALL DRAIN DETAIL

RETAINING WALL

20" PROPERLY COMPACTED BACKFILL

GROUND SURFACE

DRAINAGE PANEL (J-DRAIN 1000 OR EQUIVALENT)

WATER PROOFING BY ARCHITECT

3/4" CRUSHED ROCK (1 CU. FT./FT.)

FILTER FABRIC ENVELOPE OR BURLAP ROCK-POCKET

APPROVED PIPE EXTENDED TO SUBDRAIN

ELIMINATION OF THE ROCK POCKET OR MODIFICATION OF THE ROCK POCKET DIMENSIONS REQUIRES A MODIFICATION BE FILED WITH THE CITY OF LOS ANGELES

FOUNDATION

TO SUBDRAIN

NO SCALE
SHORING WALL PRESSURE CALCULATION

Los Angeles, California

Project No. A9724-06-01

March 2018

600 South San Pedro Street

Phone (818) 841-8388 - Fax (818) 841-1704

3303 N. San Fernando Blvd. - Suite 100 - Burbank, CA 91504

Environment Geotechnical Materials

Checked By: JTA

Drafted By: RSM

Shoring Design with Transitioned Backfill

(Vector Analysis)

Input:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoring Height (H)</td>
<td>15.00 feet</td>
</tr>
<tr>
<td>Slope Angle of Backfill (θ)</td>
<td>0.0 degrees</td>
</tr>
<tr>
<td>Height of Slope above Shoring (h₀)</td>
<td>0.0 feet</td>
</tr>
<tr>
<td>Horizontal Length of Slope (l₁)</td>
<td>0.0 feet</td>
</tr>
<tr>
<td>Total Height (Shoring + Slope) (Hₜ)</td>
<td>15.00 feet</td>
</tr>
<tr>
<td>Unit Weight of Retained Soils (g)</td>
<td>125.0 pcf</td>
</tr>
<tr>
<td>Friction Angle of Retained Soils (f)</td>
<td>32.00 degrees</td>
</tr>
<tr>
<td>Cohesion of Retained Soils (c)</td>
<td>100.0 psf</td>
</tr>
<tr>
<td>Factor of Safety (FS)</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Factored Parameters:

- \(f_{(P)} \) = 26.6 degrees
- \(g_{(P)} \) = 80.0 psf

<table>
<thead>
<tr>
<th>Failure Angle (a)</th>
<th>Height of Tension Crack (Hₜ)</th>
<th>Area of Wedge (A)</th>
<th>Weight of Wedge (W)</th>
<th>Length of Failure Plane (l₀)</th>
<th>Active Pressure (Pₜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>2.6</td>
<td>109</td>
<td>13603.1</td>
<td>17.6</td>
<td>3969.1</td>
</tr>
<tr>
<td>46</td>
<td>2.5</td>
<td>106</td>
<td>13210.0</td>
<td>17.4</td>
<td>3743.3</td>
</tr>
<tr>
<td>47</td>
<td>2.4</td>
<td>102</td>
<td>12770.8</td>
<td>17.2</td>
<td>3529.2</td>
</tr>
<tr>
<td>48</td>
<td>2.3</td>
<td>98</td>
<td>12333.0</td>
<td>17.0</td>
<td>3359.9</td>
</tr>
<tr>
<td>49</td>
<td>2.3</td>
<td>96</td>
<td>11940.4</td>
<td>18.8</td>
<td>3158.1</td>
</tr>
<tr>
<td>50</td>
<td>2.2</td>
<td>92</td>
<td>11557.0</td>
<td>19.6</td>
<td>2966.7</td>
</tr>
<tr>
<td>51</td>
<td>2.2</td>
<td>88</td>
<td>11142.9</td>
<td>18.5</td>
<td>2848.9</td>
</tr>
<tr>
<td>52</td>
<td>2.2</td>
<td>86</td>
<td>10758.6</td>
<td>18.3</td>
<td>2713.3</td>
</tr>
<tr>
<td>53</td>
<td>2.1</td>
<td>83</td>
<td>10381.9</td>
<td>18.1</td>
<td>2588.6</td>
</tr>
<tr>
<td>54</td>
<td>2.1</td>
<td>80</td>
<td>10014.2</td>
<td>15.9</td>
<td>2473.5</td>
</tr>
<tr>
<td>55</td>
<td>2.1</td>
<td>77</td>
<td>9654.5</td>
<td>15.8</td>
<td>2367.0</td>
</tr>
<tr>
<td>56</td>
<td>2.1</td>
<td>74</td>
<td>9302.4</td>
<td>15.6</td>
<td>2264.4</td>
</tr>
<tr>
<td>57</td>
<td>2.1</td>
<td>72</td>
<td>8957.6</td>
<td>15.4</td>
<td>2176.8</td>
</tr>
<tr>
<td>58</td>
<td>2.1</td>
<td>69</td>
<td>8619.7</td>
<td>15.2</td>
<td>2091.5</td>
</tr>
<tr>
<td>59</td>
<td>2.1</td>
<td>66</td>
<td>8288.4</td>
<td>15.1</td>
<td>2012.0</td>
</tr>
<tr>
<td>60</td>
<td>2.1</td>
<td>64</td>
<td>7963.2</td>
<td>14.9</td>
<td>1937.6</td>
</tr>
<tr>
<td>61</td>
<td>2.1</td>
<td>61</td>
<td>7643.9</td>
<td>14.8</td>
<td>1868.0</td>
</tr>
<tr>
<td>62</td>
<td>2.1</td>
<td>59</td>
<td>7330.2</td>
<td>14.6</td>
<td>1802.6</td>
</tr>
<tr>
<td>63</td>
<td>2.1</td>
<td>56</td>
<td>7021.7</td>
<td>14.5</td>
<td>1741.1</td>
</tr>
<tr>
<td>64</td>
<td>2.1</td>
<td>54</td>
<td>6711.0</td>
<td>14.3</td>
<td>1683.1</td>
</tr>
<tr>
<td>65</td>
<td>2.2</td>
<td>51</td>
<td>6419.1</td>
<td>14.1</td>
<td>1628.3</td>
</tr>
<tr>
<td>66</td>
<td>2.2</td>
<td>49</td>
<td>6124.4</td>
<td>14.0</td>
<td>1576.3</td>
</tr>
<tr>
<td>67</td>
<td>2.2</td>
<td>47</td>
<td>5833.8</td>
<td>13.8</td>
<td>1527.0</td>
</tr>
<tr>
<td>68</td>
<td>2.3</td>
<td>44</td>
<td>5547.0</td>
<td>13.7</td>
<td>1479.5</td>
</tr>
<tr>
<td>69</td>
<td>2.4</td>
<td>42</td>
<td>5263.7</td>
<td>13.5</td>
<td>1434.9</td>
</tr>
<tr>
<td>70</td>
<td>2.4</td>
<td>40</td>
<td>4983.5</td>
<td>13.4</td>
<td>1391.6</td>
</tr>
</tbody>
</table>

Maximum Active Pressure Resultant

\[P_{A\,\text{max}} = 3991.1 \text{ lbs/lineal foot} \]

Equivalent Fluid Pressure (per lineal foot of shoring)

\[EFP = 2 \times P_{A} / H^{2} \]

\[EFP = 35.5 \text{ pcf} / 56.8 \text{ pcf} \]

Design Shoring for an Equivalent Fluid Pressure:

- \(P_{A} = 36 \text{ pcf} \)
- \(P_{A} = 57 \text{ pcf} \)

GEOCON WEST, INC.

Environmental Geotechnical Materials

3303 N. San Fernando Blvd. - Suite 100 - Burbank, CA 91504

Phone (818) 841-8388 - Fax (818) 841-1704

March 2018

Project No. A9724-06-01

Fig. 8

SHORING WALL PRESSURE CALCULATION

San Pedro Affordable Housing Tower

600 South San Pedro Street

Los Angeles, California

DRAFTED BY: RSM

CHECKED BY: JTA
BORING PERCOLATION TEST FIELD LOG

<table>
<thead>
<tr>
<th>Date</th>
<th>2/10/2018</th>
<th>Boring/Test Number:</th>
<th>B5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td>A9724-06-01</td>
<td>Diameter of Boring:</td>
<td>8 inches</td>
</tr>
<tr>
<td>Project Location:</td>
<td>600 South San Pedro Street</td>
<td>Diameter of Casing:</td>
<td>2 inches</td>
</tr>
<tr>
<td>Earth Description:</td>
<td>SW</td>
<td>Depth of Boring:</td>
<td>20 feet</td>
</tr>
<tr>
<td>Tested By:</td>
<td>SRH</td>
<td>Depth to Invert of BMP:</td>
<td>10 feet</td>
</tr>
<tr>
<td>Liquid Description:</td>
<td>Clear Clean Tap Water</td>
<td>Depth to Water Table:</td>
<td>60 feet</td>
</tr>
<tr>
<td>Measurement Method:</td>
<td>Sounder</td>
<td>Depth to Initial Water Depth (d_i):</td>
<td>120 inches</td>
</tr>
</tbody>
</table>

Soil Description

<table>
<thead>
<tr>
<th>Notes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilized Readings</td>
<td>Achieved with Readings</td>
</tr>
</tbody>
</table>

Reading Data

<table>
<thead>
<tr>
<th>Reading Number</th>
<th>Time Start (hh:mm)</th>
<th>Time End (hh:mm)</th>
<th>Elapsed Time (\Delta t) (min)</th>
<th>Water Drop During Standard Time Interval, (\Delta d) (in)</th>
<th>Percolation Rate (\text{inches/hour})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9:58 AM</td>
<td>10:08 AM</td>
<td>10</td>
<td>68.3</td>
<td>7.39</td>
</tr>
<tr>
<td>2</td>
<td>10:11 AM</td>
<td>10:21 AM</td>
<td>10</td>
<td>70.7</td>
<td>7.42</td>
</tr>
<tr>
<td>3</td>
<td>10:25 AM</td>
<td>10:35 AM</td>
<td>10</td>
<td>75.0</td>
<td>7.46</td>
</tr>
<tr>
<td>4</td>
<td>10:39 AM</td>
<td>10:49 AM</td>
<td>10</td>
<td>72.0</td>
<td>7.46</td>
</tr>
<tr>
<td>5</td>
<td>10:52 AM</td>
<td>11:02 AM</td>
<td>10</td>
<td>73.8</td>
<td>7.46</td>
</tr>
<tr>
<td>6</td>
<td>11:08 AM</td>
<td>11:18 AM</td>
<td>10</td>
<td>75.1</td>
<td>7.46</td>
</tr>
<tr>
<td>7</td>
<td>11:21 AM</td>
<td>11:31 AM</td>
<td>10</td>
<td>75.5</td>
<td>7.46</td>
</tr>
<tr>
<td>8</td>
<td>11:34 AM</td>
<td>11:44 AM</td>
<td>10</td>
<td>75.8</td>
<td>7.46</td>
</tr>
</tbody>
</table>

Calculations Below Based on Stabilized Readings Only

Measured Percolation Rate & Design Infiltration Rate Calculations

- Boring Radius, \(r \): 4 inches
- Test Section Height, \(h \): 120.0 inches
- Test Section Surface Area, \(A = 2\pi rh + \pi r^2 \): \(A = \frac{3066}{\text{in}^2} \)

\[
\text{Discharged Water Volume, } V = \pi r^2 \Delta d
\]

\[
\text{Percolation Rate} = \left(\frac{V}{A} \right) \Delta t
\]

- Reading 6: \(V = 3776 \text{ in}^3 \)
 Percolation Rate = 7.39 inches/hour
- Reading 7: \(V = 3794 \text{ in}^3 \)
 Percolation Rate = 7.42 inches/hour
- Reading 8: \(V = 3812 \text{ in}^3 \)
 Percolation Rate = 7.46 inches/hour

Measured Percolation Rate = 7.42 inches/hour

Reduction Factors

- Boring Percolation Test, \(RF_t = 2 \)
- Site Variability, \(RF_v = 1 \)
- Long Term Siltation, \(RF_s = 2 \)

Total Reduction Factor, \(RF = RF_t + RF_v + RF_s \): 5

Design Infiltration Rate

\[
\text{Design Infiltration Rate} = \frac{\text{Measured Percolation Rate}}{RF}
\]

Design Infiltration Rate = 1.48 inches/hour

FIGURE 9
APPENDIX A

FIELD INVESTIGATION

The site was explored on February 10, 2018 by excavating five 8-inch-diameter borings utilizing a truck-mounted hollow-stem auger drilling machine. The borings were excavated to depths ranging from approximately 20 and 40 feet below the existing ground surface. Representative and relatively undisturbed samples were obtained by driving a 3 inch, O. D., California Modified Sampler into the “undisturbed” soil mass with blows from a 140-pound auto-hammer falling 30 inches. The California Modified Sampler was equipped with 1-inch high by 2\(\frac{3}{8}\)-inch diameter brass sampler rings to facilitate soil removal and testing. Bulk samples were also obtained.

The soil conditions encountered in the borings were visually examined, classified and logged in general accordance with the Unified Soil Classification System (USCS). Logs of the borings are presented on Figures A1 through A5. The logs depict the soil and geologic conditions encountered and the depth at which samples were obtained. The location of the borings are shown on Figure 2.
BORING 1

ELEV. (MSL.)
DATE COMPLETED 2/10/18

EQUIPMENT HOLLOW STEM AUGER
BY: RSM

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth (Feet)</th>
<th>Sample No.</th>
<th>Lithology</th>
<th>Soil Class (USCS)</th>
<th>Groundwater</th>
<th>Equipment</th>
<th>Dry Density (P.F.)</th>
<th>Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B1@2'</td>
<td>AC: 3.5" AB: 10" ARTIFICIAL FILL</td>
<td>Silty Sand, poorly graded, medium dense, moist, brown, fine- to medium-grained, some fine to coarse subangular gravel.</td>
<td></td>
<td></td>
<td>22</td>
<td>116.0</td>
</tr>
<tr>
<td>2</td>
<td>B1@5'</td>
<td>ALLUVIUM</td>
<td></td>
<td>Silty Sand, poorly graded, dense, moist, brown, fine- to medium-grained, some fine to coarse subangular gravel.</td>
<td>SM</td>
<td>77</td>
<td>123.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sand, well graded, medium dense, moist, light brown and light gray, fine- to coarse-grained, fine to coarse subangular gravel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B1@10'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>124.0</td>
</tr>
<tr>
<td>6</td>
<td>B1@12'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>119.7</td>
</tr>
<tr>
<td>8</td>
<td>B1@15'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>114.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- light brown to brown</td>
<td>SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>121.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- dense</td>
<td></td>
<td>86</td>
<td>115.8</td>
</tr>
</tbody>
</table>

NOTE: The log of subsurface conditions shown hereon applies only at the specific boring or trench location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

GEOCON
<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>SAMPLE NO.</th>
<th>LITHOLOGY</th>
<th>SOIL CLASS (USCS)</th>
<th>GROUNDWATER</th>
<th>ELEV. (MSL.)</th>
<th>PENETRATION RESISTANCE (BLOWS/FT)</th>
<th>DRY DENSITY (P.C.F.)</th>
<th>MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>B1@30'</td>
<td>- medium dense</td>
<td>-</td>
<td>SW</td>
<td>105.9</td>
<td>38</td>
<td>50 (6")</td>
<td>12.8</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>- medium dense</td>
<td>-</td>
<td>SW</td>
<td>104.3</td>
<td>38</td>
<td>50 (4")</td>
<td>--</td>
</tr>
<tr>
<td>34</td>
<td>B1@34.5'</td>
<td>- very dense</td>
<td>-</td>
<td></td>
<td>2.7</td>
<td>38</td>
<td>50 (6")</td>
<td>--</td>
</tr>
<tr>
<td>36</td>
<td>B1@39'</td>
<td>- some cobbles (to 4")</td>
<td>-</td>
<td></td>
<td>--</td>
<td>38</td>
<td>50 (4")</td>
<td>--</td>
</tr>
<tr>
<td>40</td>
<td>B1@40'</td>
<td>- medium dense</td>
<td>-</td>
<td>SW</td>
<td>105.9</td>
<td>38</td>
<td>50 (6")</td>
<td>12.8</td>
</tr>
</tbody>
</table>

Total depth of boring: 40 feet
Fill to 3.5 feet.
No groundwater encountered.
Backfilled with soil cuttings and tamped.
Cold patched.

Figure A1, Log of Boring 1, Page 2 of 2

SAMPLE SYMBOLS

- □... SAMPLING UNSUCCESSFUL
- □... STANDARD PENETRATION TEST
- □... DRIVE SAMPLE (UNDISTURBED)
- □... DISTURBED OR BAG SAMPLE
- □... CHUNK SAMPLE
- □... WATER TABLE OR SEEPAGE

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

GEOCON
<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>SAMPLE NO.</th>
<th>LITHOLOGY</th>
<th>SOIL CLASS (USCS)</th>
<th>GROUNDWATER</th>
<th>PENETRATION RESISTANCE (BLOWS/FT)</th>
<th>DRY DENSITY (P.C.F.)</th>
<th>MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B2@2'</td>
<td>AC: 3" AB: 9"</td>
<td>ARTIFICIAL FILL</td>
<td>Sand, poorly graded, very loose, moist, brown, fine- to medium-grained, some fine to coarse gravel.</td>
<td>6</td>
<td>107.1</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>ALLUVIUM</td>
<td></td>
<td>Sand, poorly graded, loose, moist light brown, fine- to medium-grained sand, some fine to coarse gravel.</td>
<td>9</td>
<td>92.3</td>
<td>10.4</td>
</tr>
<tr>
<td>4</td>
<td>B2@5'</td>
<td></td>
<td></td>
<td>SP - brown and gray</td>
<td>18</td>
<td>99.3</td>
<td>8.7</td>
</tr>
<tr>
<td>6</td>
<td>B2@10'</td>
<td></td>
<td></td>
<td>Sand, well-graded, dense, moist, tan with some gray, fine- to coarse-grained, some fine to coarse gravel.</td>
<td>56</td>
<td>121.8</td>
<td>1.6</td>
</tr>
<tr>
<td>8</td>
<td>B2@12'</td>
<td>- dense</td>
<td></td>
<td>- medium dense</td>
<td>38</td>
<td>110.8</td>
<td>1.3</td>
</tr>
<tr>
<td>10</td>
<td>B2@15'</td>
<td></td>
<td></td>
<td>- very dense, light brown and light gray</td>
<td>50 (5")</td>
<td>133.8</td>
<td>1.6</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>- medium dense</td>
<td>52</td>
<td>111.0</td>
<td>1.4</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>B2@19.5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>B2@25'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure A2, Log of Boring 2, Page 1 of 2

SAMPLE SYMBOLS
- 🗿️ SAMPLING UNSUCCESSFUL
- 🔧 STANDARD PENETRATION TEST
- ⏰ DRIVE SAMPLE (UNDISTURBED)
- 🚴 DISTURBED OR BAG SAMPLE
- 🎵 CHUNK SAMPLE
- 🤸 WATER TABLE OR SEEPAGE

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

GEOCON
Boring 2

<table>
<thead>
<tr>
<th>Depth in Feet</th>
<th>Sample No.</th>
<th>Lithology</th>
<th>Soil Class (USCS)</th>
<th>Groundwater</th>
<th>Material Description</th>
<th>Penetration Resistance (Blows/ft)</th>
<th>Dry Density (P.C.F.)</th>
<th>Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>B2@30’</td>
<td>- dense</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>107.9</td>
<td>1.3</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>B2@34’</td>
<td>- very dense</td>
<td></td>
<td>SW</td>
<td></td>
<td>50 (5.5")</td>
<td>107.3</td>
<td>2.3</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 40 | B2@39.5’ | | | | Total depth of boring: 40 feet
Fill to 3.5 feet.
No groundwater encountered.
Backfilled with soil cutting and tamped.
Cold patched. | 50 (5.5") | 113.2 | 2.5 |

Figure A2,

Log of Boring 2, Page 2 of 2

Sample Symbols
- Sampling Unsuccessful
- Standard Penetration Test
- Drive Sample (Undisturbed)
- Disturbed or Bag Sample
- Chunk Sample
- Water Table or Seepage

Note: The log of subsurface conditions shown hereon applies only at the specific boring or trench location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
Boring 3

ELEV. (MSL.) -
DATE COMPLETED 2/10/18
EQUIPMENT HOLLOW STEM AUGER
BY: RSM

<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>SAMPLE NO.</th>
<th>LITHOLOGY</th>
<th>SOIL CLASS (USCS)</th>
<th>MATERIAL DESCRIPTION</th>
<th>PENETRATION RESISTANCE (BLOWS/FT)</th>
<th>DRY DENSITY (P.C.F.)</th>
<th>MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>AC: 3" AB: 8"</td>
<td>ARTIFICIAL FILL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty Sand, medium dense, moist, brown, fine- to medium-grained.</td>
<td>35</td>
<td>115.0</td>
<td>5.7</td>
</tr>
<tr>
<td>2</td>
<td>B3@2'</td>
<td>BULK 3-8'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B3@5'</td>
<td></td>
<td></td>
<td>ALLUVIUM</td>
<td>Sand, well graded, loose, moist, light brown and light gray, fine- to coarse-grained sand, fine to coarse subangular gravel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B3@10'</td>
<td>SW</td>
<td></td>
<td></td>
<td>- medium dense</td>
<td>23</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>B3@12'</td>
<td></td>
<td></td>
<td></td>
<td>- dense, white and gray</td>
<td>26</td>
<td>103.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- very dense</td>
<td></td>
<td>15.1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total depth of boring: 20 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fill to 3 feet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No groundwater encountered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Backfilled with soil cuttings and tamped.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cold patched.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>B3@19'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 (6")</td>
<td>121.5</td>
</tr>
</tbody>
</table>

Figure A3, Log of Boring 3, Page 1 of 1

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
BORING 4

ELEV. (MSL.) - - **DATE COMPLETED** 2/10/18
EQUIPMENT HOLLOW STEM AUGER
BY: RSM

<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>SAMPLE NO.</th>
<th>LITHOLOGY</th>
<th>SOIL CLASS (USCS)</th>
<th>GROUNDWATER</th>
<th>PENETRATION RESISTANCE (BLOWS/FT)</th>
<th>DRY DENSITY (P.C.F.)</th>
<th>MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-20'</td>
<td>BULK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B4@2.5</td>
<td>AC: 4”</td>
<td>ALLUVIUM Sand, well graded, medium dense, moist, light brown, fine- to coarse-grained, some fine to coarse subangular gravel.</td>
<td>21</td>
<td>103.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B4@5'</td>
<td>- no recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B4@6.5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B4@9.5'</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B4@14.5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B4@19.5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>B4@24.5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
BORING 4

<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>SAMPLE NO.</th>
<th>LITHOLOGY</th>
<th>SOIL CLASS (USCS)</th>
<th>GROUNDWATER</th>
<th>PENETRATION RESISTANCE (BLOWS/FT*)</th>
<th>ELEV. (MSL.)</th>
<th>DATE COMPLETED</th>
<th>PENETRATION RESISTANCE (P.C.F.)</th>
<th>DRY DENSITY</th>
<th>MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>B4@29.5</td>
<td>- very dense</td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td>2/10/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>B4@34.5</td>
<td>SW</td>
<td></td>
<td></td>
<td>50 (1")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>
| 40 | B4@39.5 | - Total depth of boring: 40.5 feet
No fill.
No groundwater encountered.
Backfilled with soil cuttings and tamped.
Cold patched. | | | 50 (5.5") | | | | | |

Note: The log of subsurface conditions shown hereon applies only at the specific boring or trench location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING 5

ELEV. (MSL.) - - | **DATE COMPLETED** 2/10/18
EQUIPMENT HOLLOW STEM AUGER | **BY:** RSM

<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>SAMPLE NO.</th>
<th>LITHOLOGY</th>
<th>SOIL CLASS (USCS)</th>
<th>GROUNDWATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B5@2'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B5@4.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B5@10'</td>
<td></td>
<td></td>
<td>SW</td>
</tr>
<tr>
<td>12</td>
<td>B5@11.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B5@15'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>B5@19'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **ARTIFICIAL FILL**
 - AC: 6” AB: 5.5”
 - Sand, poorly graded, loose moist, brown to dark brown, medium- to coarse-grained, some fine to coarse subangular gravel.

- **ALLUVIUM**
 - Sand, well graded, loose, moist, light brown, fine- to coarse-grained, some fine to coarse subangular gravel.
 - medium dense

- **SW**
 - no recovery

Total depth of boring: 20 feet
Fill to 3.5 feet.
No groundwater encountered.
Percolation testing performed.
Backfilled and grouted.

<table>
<thead>
<tr>
<th>PENETRATION RESISTANCE (BLOWS/FT)</th>
<th>DRY DENSITY (P.C.F.)</th>
<th>MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>112.9</td>
<td>2.6</td>
</tr>
<tr>
<td>23</td>
<td>105.0</td>
<td>6.1</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

SAMPLE SYMBOLS

- .. SAMPLING UNSUCCESSFUL
- .. STANDARD PENETRATION TEST
- .. DRIVE SAMPLE (UNDISTURBED)
- .. DISTURBED OR BAG SAMPLE
- .. CHUNK SAMPLE
- .. WATER TABLE OR SEEPAGE

Figure A5, Log of Boring 5, Page 1 of 1
APPENDIX B

LABORATORY TESTING

Laboratory tests were performed in accordance with generally accepted test methods of the “American Society for Testing and Materials (ASTM)”, or other suggested procedures. Selected samples were tested for direct shear strength, consolidation and expansion characteristics, corrosivity, in-place dry density and moisture content. The results of the laboratory tests are summarized in Figures B1 through B6. The in-place dry density and moisture content of the samples tested are presented on the boring logs, Appendix A.
Direct Shear, Consolidated Drained

<table>
<thead>
<tr>
<th>Sample</th>
<th>Soil Type</th>
<th>Dry Density</th>
<th>Initial Moisture (%)</th>
<th>Final Moisture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 @ 5'</td>
<td>SM</td>
<td>120.1</td>
<td>13.2</td>
<td>15.6</td>
</tr>
<tr>
<td>B2 @ 5'</td>
<td>SP</td>
<td>90.4</td>
<td>10.1</td>
<td>25.7</td>
</tr>
<tr>
<td>B3 @ 12'</td>
<td>SW</td>
<td>106.5</td>
<td>14.3</td>
<td>12.4</td>
</tr>
<tr>
<td>B1 @ 20'</td>
<td>SW</td>
<td>107.7</td>
<td>9.9</td>
<td>17.4</td>
</tr>
<tr>
<td>B4 @ 1-20'</td>
<td>SW</td>
<td>106.0</td>
<td>13.4</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Shear Strength (KSF)

- **B1 @ 5'**: SM, 120.1 KSF, 13.2% initial, 15.6% final
- **B2 @ 5’**: SP, 90.4 KSF, 10.1% initial, 25.7% final
- **B3 @ 12’**: SW, 106.5 KSF, 14.3% initial, 12.4% final
- **B1 @ 20’**: SW, 107.7 KSF, 9.9% initial, 17.4% final
- **B4 @ 1-20’**: SW, 106.0 KSF, 13.4% initial, 17.0% final

Normal Pressure (KSF)

- **B1 @ 5’**: 120.1 KSF, 13.2% initial, 15.6% final
- **B2 @ 5’**: 90.4 KSF, 10.1% initial, 25.7% final
- **B3 @ 12’**: 106.5 KSF, 14.3% initial, 12.4% final
- **B1 @ 20’**: 107.7 KSF, 9.9% initial, 17.4% final
- **B4 @ 1-20’**: 106.0 KSF, 13.4% initial, 17.0% final

DIRECT SHEAR TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018 | PROJECT NO. A9724-06-01 | FIG. B1
CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

WATER ADDED AT 2 KSF

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 3'

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2

CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2

CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2

CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2

CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2

CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2

CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2

CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2

CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

MARCH 2018
PROJECT NO. A9744-06-01
FIG. B2

CONSOLIDATION PRESSURE (KSF)

PIERCING PLOTTED AT:

B1 @ 16'

B1 @ 22'

B1 @ 30'

LOS ANGELES, CALIFORNIA
SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
MARCH 2018
FIG. B2
CONSOLIDATION TEST RESULTS

SAN PEDRO AFFORDABLE HOUSING TOWER
600 SOUTH SAN PEDRO STREET
LOS ANGELES, CALIFORNIA

ENVIRONMENTAL GEOTECHNICAL MATERIALS
3303 N. SAN FERNANDO BLVD. - SUITE 100 - BURBANK, CA 91504
PHONE (818) 841-8388 - FAX (818) 841-1704

DRAFTED BY: RSM CHECKED BY: JTA
MARCH 2018 PROJECT NO. A9724-06-01 FIG. B3
SUMMARY OF LABORATORY EXPANSION INDEX TEST RESULTS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Moisture Content (%)</th>
<th>Dry Density (pcf)</th>
<th>Expansion Index</th>
<th>**UBC Classification</th>
<th>**CBC Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4 @ 1-20'</td>
<td>9</td>
<td>13.5</td>
<td>113.8</td>
<td>0</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

* Reference: 1997 Uniform Building Code, Table 18-I-B.

** Reference: 2016 California Building Code, Section 1803.5.3

SUMMARY OF LABORATORY MAXIMUM DENSITY AND AND OPTIMUM MOISTURE CONTENT TEST RESULTS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Soil Description</th>
<th>Maximum Dry Density (pcf)</th>
<th>Optimum Moisture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4 @ 1-20'</td>
<td>Well-Graded Sand</td>
<td>118.0</td>
<td>13.5</td>
</tr>
</tbody>
</table>
SUMMARY OF LABORATORY POTENTIAL OF HYDROGEN (pH) AND RESISTIVITY TEST RESULTS
CALIFORNIA TEST NO. 643

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>pH</th>
<th>Resistivity (ohm centimeters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 @ 12’</td>
<td>7.94</td>
<td>5,500 (Moderately Corrosive)</td>
</tr>
<tr>
<td>B4 @ 1-20’</td>
<td>8.05</td>
<td>17,000 (Mildly Corrosive)</td>
</tr>
</tbody>
</table>

SUMMARY OF LABORATORY CHLORIDE CONTENT TEST RESULTS
EPA NO. 325.3

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Chloride Ion Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 @ 12’</td>
<td>0.003</td>
</tr>
<tr>
<td>B4 @ 1-20’</td>
<td>0.004</td>
</tr>
</tbody>
</table>

SUMMARY OF LABORATORY WATER SOLUBLE SULFATE TEST RESULTS
CALIFORNIA TEST NO. 417

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Water Soluble Sulfate (% SO_4)</th>
<th>Sulfate Exposure*</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 @ 12’</td>
<td>0.012</td>
<td>Negligible</td>
</tr>
<tr>
<td>B4 @ 1-20’</td>
<td>0.001</td>
<td>Negligible</td>
</tr>
</tbody>
</table>