IV. Environmental Impact Analysis

G.1 Public Services - Fire Protection

1. Introduction

This section describes existing fire protection and emergency medical services within the project area and analyzes potential impacts related to these services that would occur as a result of the project. The analysis of project impacts addresses service capacity, fire flow, emergency response times, emergency access, and fire safety equipment. The analysis is based, in part, on information provided by Captain William Wells and Assistant Fire Marshal C.A. Fry of the Los Angeles Fire Department’s Planning Section and Hydrants and Access Unit.

2. Environmental Setting

a. Existing Conditions

(1) Fire Protection Facilities, Services, and Response Times

In accordance with the Los Angeles City Charter, Section 520, the Los Angeles Fire Department (LAFD) provides fire prevention and suppression services, and emergency medical services to the City of Los Angeles (City). The LAFD is a full-spectrum life safety agency with approximately 3,586 uniformed personnel providing fire prevention, firefighting, emergency medical care, technical rescue, hazardous materials mitigation, disaster response, public education and community service to a population of approximately four million throughout the City and its environs.¹ There are 106 neighborhood fire stations strategically located across the LAFD’s 471 square mile jurisdiction.² At any given time, a

¹ About the LAFD, website at: http://lafd.org/about.htm; accessed April 1, 2010.
² Ibid.
total of 1,104 firefighters, including 242 paramedics, are on 24-hour duty.\(^3\) In addition, the LAFD is supported by 353 technical and administrative personnel.\(^4\)

Three existing LAFD fire stations are located in the vicinity of the project site: Fire Station Nos. 72, 105, and 84. Figure IV.G-1 on page 618 shows the locations of the three fire stations, and Table IV.G-1 on page 619 summarizes the location, response distance, staffing, and equipment of these stations.

Fire Station No. 72 is located at 6811 De Soto Avenue in Canoga Park and is approximately 1.3 miles to the northeast.\(^5\) The area served by Fire Station No. 72 is generally bounded by Strathern Street on the north, Winnetka Avenue on the east, Erwin Street on the south, and Topanga Canyon Boulevard on the west. Based on City population data for the census tracts located within the service boundaries of Fire Station No. 72, the 2008 residential service population for this fire station is estimated at approximately 64,357 residents.\(^6\) Fire Station No. 72 is the designated “first in” station for the project site. LAFD “first in” districts, or fire service areas, are based on response distances and times between the City’s neighborhood fire stations. “First in” district boundaries are generally located at half-way points between two stations.\(^7\) “First in” districts are also based on the land use contained within the district, since the demand for services and response times can vary depending on population density, traffic, building types, and uses. For example, an area crossed by high-traffic arteries or containing commercial districts or high density residential uses may create greater demand on fire services within a prescribed geographic area than would single-family residential uses.

\(^{3}\) Ibid.
\(^{4}\) Ibid.
\(^{5}\) Response distance provided by LAFD in a written correspondence from Captain William N. Wells, Planning Section, Los Angeles Fire Department, October 30, 2007.
\(^{6}\) Census tracts which are located in Fire Station No. 72’s service area are as follows: Census Tracts 1351.12 (wherein the project site is located), 134201, 134000, 134710, 134800, 133300, 134902, 135112, 134520, 134303, 134510, 135111, 134720, 134900, and 134306. The estimated 2008 population for these tracts was obtained from Southern California Association of Governments Integrated Growth Forecast data accessed online at: http://www.scag.ca.gov/forecast/index.htm, accessed April 21, 2010. Portions of some census tracts are not located in Fire Station No. 72’s service area. For the purpose of this analysis, census tracts with less than 25 percent of their area within Fire Station No. 72’s boundaries were excluded (Census Tract 134720, Census Tract 134901, and Census Tract 135111).
\(^{7}\) The midway points are determined according to response times to specific “Z” points (points placed 500 feet apart on a grid).
Fire Station 72
6811 De Soto Avenue

Fire Station 105
6345 Fallbrook Avenue

Fire Station 84
21050 Burbank Boulevard

Figure IV.G-1
Fire Stations Within the Vicinity of the Project Site

LEGEND
Project Site

"Second call" stations that support Fire Station No. 72 during emergency incidents are Fire Station No. 105 and Fire Station No. 84. Fire Station No. 105 is located at 6345 Fallbrook Avenue in Woodland Hills, approximately 1.3 miles west of the project site, and Fire Station No. 84 is located at 21050 Burbank Boulevard in Woodland Hills, approximately 1.4 miles southeast of the project site. In a major emergency, third and fourth response fire protection and emergency services would be provided, as needed, by other fire stations in the LAFD system in the surrounding area. In addition, the LAFD has a mutual aid agreement with the County of Los Angeles.

8 Written correspondence, Captain William N. Wells, Planning Section, Los Angeles Fire Department, October 30, 2007 and November 1, 2007.

9 Response distances provided by LAFD, in a written correspondence from Captain William N. Wells, Planning Section, Los Angeles Fire Department, October 30, 2007

10 Fire Station 84 has recently relocated to this address from its former address of 5340 Canoga Avenue, Woodland Hills.

11 Phone communication, Captain Gatewood, Los Angeles Fire Department, November 23, 2010.

Table IV.G-1

Fire Stations Located in the Vicinity of the Project Site

<table>
<thead>
<tr>
<th>Station No./Location</th>
<th>Location</th>
<th>Response Distance From Project Site</th>
<th>24-Hour Staffing</th>
<th>Equipment a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Station No. 72</td>
<td>6811 De Soto Ave.</td>
<td>1.3 mile</td>
<td>12</td>
<td>- Truck and Engine (Light Force)</td>
</tr>
<tr>
<td></td>
<td>Canoga Park</td>
<td></td>
<td></td>
<td>- Fire Engine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Paramedic Rescue Ambulance</td>
</tr>
<tr>
<td>Fire Station No. 105</td>
<td>6345 Fallbrook Ave.</td>
<td>1.3 mile</td>
<td>12</td>
<td>- Truck and Engine (Light Force)</td>
</tr>
<tr>
<td></td>
<td>Woodland Hills</td>
<td></td>
<td></td>
<td>- Fire Engine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Paramedic Rescue Ambulance</td>
</tr>
<tr>
<td>Fire Station No. 84</td>
<td>21050 Burbank Blvd.</td>
<td>1.4 mile</td>
<td>9</td>
<td>- Fire Engine</td>
</tr>
<tr>
<td></td>
<td>Woodland Hills</td>
<td></td>
<td></td>
<td>- Paramedic Rescue Ambulance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Battalion Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- EMS Battalion</td>
</tr>
</tbody>
</table>

a Fire engines and fire trucks perform significantly different functions. Fire engines carry primarily water, hose, and a pump. Fire trucks primarily carry ladders, a large assortment of tools used for ventilation, rescue, forcible entry, thermal imaging, and salvage. Fire trucks do not carry any hose or water.

The LAFD classifies responses either as emergency medical service (EMS) or fire-related. EMS responses are further classified into either Basic Life Support (BLS) or Advanced Life Support (ALS). BLS medical responses require the deployment of a fire truck, an ambulance, and the services of an emergency medical technician (EMT). ALS medical responses require the deployment of a fire truck, an ambulance, and a paramedic. Fire-related responses include building fires, smoke, traffic accidents not requiring EMS, trash and vehicle fires, responses to fire alarms, elevator rescues, and similar emergencies. Table IV.G-2 on page 621 lists the 2008 annual number of responses and average response times for the three LAFD stations closest to the project site. As shown therein, Fire Station No. 72 had 7,420 total responses in 2008, consisting of 1,187 fire-related responses and 6,233 EMS responses. As indicated above, Fire Station No. 72 had a service population of 64,357 residents in 2008. Therefore, this fire station had an average rate of 0.12 annual responses per capita.12 For all three fire stations, there were approximately 19,760 responses total. EMS responses comprised approximately 81 percent of the total responses for the three fire stations, which is slightly less than the Citywide average of 83 percent.13 Fire-related responses comprised approximately 19 percent of the total responses.

The average response times for each of the station’s respective service areas are also listed in Table IV.G-2.14 As shown, average response times for Fire Station No. 72, the “first-in” station, are 5.1 minutes for fire responses and 5.5 minutes for EMS responses. The average response times for all three stations for fire responses range from 5.1 minutes to 5.7 minutes and from 5.5 minutes to 6.0 minutes for EMS responses. In comparison, the Citywide average response times are 5.4 minutes for fire incidents and 5.8 minutes for EMS incidents.15

\textbf{(2) Emergency Access}

The project site is currently accessible to emergency vehicles from Victory Boulevard to the north, a major roadway serving the project site, as well as from Topanga Canyon Boulevard to the west, Owensmouth Avenue to the east, and Erwin Street to the

12 Based on 2008 data, the average response rate is calculated as follows: 7,420 responses ÷ 64,357 residents = 0.12 responses per capita.

13 Email correspondence, Captain William N. Wells, Planning Section, Los Angeles Fire Department, February 25, 2009.

14 Per communication with the LAFD, the LAFD does not publish or benchmark response times for basic life support EMS incidents. Thus, EMS responses reflect ALS responses.

15 Ibid.
(3) Fire Flow

Water for firefighting purposes is supplied to the project site via existing City of Los Angeles Department of Water and Power (LADWP) water mains and fire hydrants located within adjacent streets. The water mains serving the project site include a 12-inch water line in Victory Boulevard, an 8-inch water line in Owensmouth Avenue, an 8-inch water line in Erwin Street, and a 12-inch water line in Topanga Canyon Boulevard. There are nine fire hydrants along the project site perimeter as well as two fire hydrants located within the south. Emergency access within the project site is currently provided via interior driveways.

<table>
<thead>
<tr>
<th>Fire Station</th>
<th>Annual Responses</th>
<th>Average Response Time a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Station No. 72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Responses</td>
<td>1,187 (16%)</td>
<td>5.1 minutes</td>
</tr>
<tr>
<td>Emergency Medical Service</td>
<td>6,233 (84%)</td>
<td>5.5 minutes</td>
</tr>
<tr>
<td>Total Station Responses</td>
<td>7,420</td>
<td></td>
</tr>
<tr>
<td>Fire Station No. 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Responses</td>
<td>963 (16%)</td>
<td>5.7 minutes</td>
</tr>
<tr>
<td>Emergency Medical Service</td>
<td>5,053 (84%)</td>
<td>5.6 minutes</td>
</tr>
<tr>
<td>Total Station Responses</td>
<td>6,016</td>
<td></td>
</tr>
<tr>
<td>Fire Station No. 84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Responses</td>
<td>1,644 (26%)</td>
<td>5.6 minutes</td>
</tr>
<tr>
<td>Emergency Medical Service</td>
<td>4,680 (74%)</td>
<td>6.0 minutes</td>
</tr>
<tr>
<td>Total Station Responses</td>
<td>6,324</td>
<td></td>
</tr>
<tr>
<td>TOTAL RESPONSES</td>
<td>19,760</td>
<td></td>
</tr>
<tr>
<td>Fire Responses</td>
<td>3,794 (19%)</td>
<td></td>
</tr>
<tr>
<td>Emergency Medical Service</td>
<td>15,966 (81%)</td>
<td></td>
</tr>
</tbody>
</table>

a. Response times for EMS responses reflect ALS response times. Per communication with the LAFD, the LAFD does not benchmark or publish BLS response times as they are misleading since they include non-emergency responses without red lights and siren.

Source: Written correspondence, Captain William N. Wells, Planning Section, Los Angeles Fire Department, February 24, 2009.
project site.16 All hydrants have either 2 1/2X4D or 4D outlets which conform to the minimum standard fire hydrants in accordance with Division 9 of the Fire Code (Section 57.09.06). The project site is located within an adequate fire hydrant service area.

(4) Wildfire Risk

Due to unique fuel, terrain and climatic conditions, brush fires are often a major threat to life and property throughout the Southern California region. The risk of wildfire hazard is especially increased when the dry Santa Ana winds arrive, usually in the fall and winter seasons. The desert blown Santa Ana winds turn vegetation to tinder and spread localized fires quickly. Areas in the City that are susceptible to wildfires include areas that lie within the urban/wildland interface. The project site is located in a suburban area of the City. No wildlands are located nearby. Accordingly, based on the City’s Safety Element of the General Plan, the project site is not located within a Wildfire Hazard Area as designated by the City.17

The City identifies Special Fire Hazard Zones. The project site is not located in a Very High Fire Severity Zone or Fire District No. 1. Rather, the project site is located in Fire District No. 2. Locations within Fire District No. 2 are subject to additional developmental regulations to mitigate fire hazard related risks based upon the zoning designation.

b. Regulatory Framework

(1) State and Regional

(a) California Building Code

The California Building Code (CBC) [California Code of Regulations (CCR), Title 24] is a compilation of building standards, including fire safety standards for new buildings. CBC standards are based on building standards that have been adopted by state agencies without change from a national model code; building standards based on a national model code that have been changed to address particular California conditions; and building standards authorized by the California legislature but not covered by the national model code. The CBC includes the California Fire Code (CFC) [CCR, Title 24, Part 9]. Typical

17 City of Los Angeles, Safety Element of the General Plan, Exhibit D, 1996.
IV.G.1. Public Services - Fire Protection

Fire safety requirements of the CFC include the installation of fire sprinklers in all high-rise buildings, the establishment of fire resistance standards for fire doors, building materials, and particular types of construction, and the clearance of debris and vegetation within a prescribed distance from occupied structures within wildfire hazard areas. The CBC applies to all occupancies in California, except where stricter standards have been adopted by local agencies. The State adopted the 2007 CBC on January 29, 2007 and the CBC became effective on January 1, 2008. Specific CBC building and fire safety regulations have been incorporated by reference in the Los Angeles Municipal Code (LAMC) with local amendments.

(b) Regulations Regarding Operation of the Member-Only Fueling Station

As discussed below, the proposed member-only fueling station would include storage of fuel within underground storage tanks (USTs) and dispensing of fuel. The California Code of Regulations and California Health and Safety Code provides for a State underground storage tank program that includes regulations set forth by the Environmental Protection Agency (EPA). This program includes registration and permitting requirements, construction/operational standards, closure requirements, licensing of underground storage tank contractors, financial responsibility requirements, release reporting/corrective action requirements, and enforcement. This State program also requires the installation of leak detection systems and/or monitoring of underground storage tank installations. Since 1998, all tanks have been required to include corrosion protection, leak detection, and spill/overflow devices.

The member-only fueling station would also be subject to regulations set forth by the Uniform Fire Code, the National Fire Protection Agency (NFPA) Article 30, regarding Flammable and Combustible Liquids and the American Petroleum Institute (API) Recommended Practices for Installation of Underground Storage Systems. In addition, as discussed in Section IV.B., Air Quality, of this Draft EIR, the proposed member-only fueling station would be subject to California Air Resources Board (CARB) Executive Orders and Procedures and South Coast Air Quality Management District (SCAQMD) Regulations. The SCAQMD is the responsible agency for issuing Authority to Construct/Permit to Operate for all fueling facilities in Los Angeles County and for providing inspections of equipment installation and testing. Specific regulatory requirements set forth by the CARB and SCAQMD include use of enhanced vapor recovery systems requirements for testing and installation contractors.
(2) City of Los Angeles

(a) Los Angeles General Plan Framework

The City of Los Angeles General Plan Framework Element (Framework), adopted in December 1996 and readopted in August 2001, provides a comprehensive, long-range strategy for accommodating long-term growth in the City and defines Citywide policies regarding issues including infrastructure and public services. The Infrastructure and Public Services Chapter of the Framework sets forth goals, objectives, and policies for fire protection and EMS in the City. Objectives and policies of Goal 9J of the Infrastructure and Public Services Chapter ensure that every neighborhood has the necessary level of fire protection service, EMS, and infrastructure. Specifically, Objective 9.16 states “monitor and forecast demand for existing and projected fire facilities and service”. Objective 9.17 “assures that all areas of the City have the highest level of fire protection and EMS, at the lowest possible cost, to meet existing and future demand. Objective 9.18 is “phase the development of new fire facilities with growth” while Objective 9.19 strives to “maintain the Los Angeles Fire Department's ability to assure public safety in emergency situations.” Under the Framework, the City standard for response distance from the fire station to the destination location is 1.5 miles.18

(b) General Plan Safety Element

The General Plan Safety Element (Safety Element), which was adopted November 26, 1996, contains policies related to the City’s response to hazards and natural disasters such as fires. The goals, policies, and programs of the Safety Element are broadly stated to reflect the comprehensive scope of the Emergency Operations Organization (EOO), of which the LAFD is a member. Policy 2.1.6 of the Safety Element calls for the City to continue to maintain, enforce, and upgrade requirements, procedures, and standards to facilitate effective fire suppression. Fire suppression standards include peak load water flow and Building and Fire Code regulations, including minimum road widths, access, and clearances around structures. The policy further states that the LAFD shall revise regulations or procedures to include the establishment of minimum standards for the location and expansion of fire facilities based on fire flow, intensity and type of land use, life hazard, occupancy, and degree of hazard so as to provide adequate fire and EMS response. Additionally, the Safety Element includes Exhibit H, Critical Facilities and Lifeline Systems, which identifies disaster routes and the location of selected emergency facilities. Disaster routes function as primary thoroughfares for movement of emergency

18 City of Los Angeles General Plan Framework, page 9-5.
response traffic and access to critical emergency facilities (i.e., hospitals, communication centers). Immediate emergency debris clearance and road/bridge repairs for short-term emergency operations are emphasized by the LAFD along these routes. The selected disaster routes also provide a plan for inter-jurisdictional road reconstruction and rebuilding following a major disaster. Exhibit H designates Topanga Canyon Boulevard, located adjacent to the site, as a disaster route.

(c) *City of Los Angeles Municipal Code*

All new construction must comply with the applicable provisions as set forth in the Los Angeles Municipal Code (LAMC). In the Fire Protection and Prevention Chapter of the LAMC, Article 7 (Fire Code), the LAFD’s Bureau of Fire Prevention and Public Safety is required to administer and enforce basic building regulations set by the State Fire Marshal. The LAMC also contains, by reference, the 2007 CBC which includes the CFC with local amendments. The local Fire Code contained within the LAMC also reflects the policies of the General Plan Safety Element. The Fire Code sets forth regulatory requirements pertaining to the prevention of fires, the investigation of fires or life safety hazards, the elimination of fire and life safety hazards in any building or structure including buildings under construction, the maintenance of fire protection equipment and systems, and the regulation of the storage, use, and handling of hazardous materials.19

Chapter 5, Article 7, Division 9 (Section 57.09.07) of the Fire Code limits the maximum response distance from a high density residential or a high density commercial neighborhood to a fire station with an engine or truck company to 1.5 miles. The maximum response distance from a commercial development to a fire station with an engine company is one mile and to a fire station with a truck company is 1.5 miles. For a central business district, the maximum response distance to a fire station with an engine company is 0.75 of a mile and to a fire station with a truck company is one mile. Projects located beyond Fire Code response distances, are required to install automatic fire sprinkler systems for every structure onsite.

Division 9 of the Fire Code also addresses fire safety, access, and fire flow requirements. Under Division 9 (Section 57.09.03), if any portion of an exterior wall is more than 150 feet from the edge of a roadway, an approved, posted fire lane shall be provided. Fire hydrant spacing and hydrant type is also determined according to land use. For commercial use, one hydrant per 80,000 square feet of land is required with a 300-foot

19 *City of Los Angeles Municipal Code, Article 7, Chapter V, Section 57.01.02., amended in Entirety, Ordinance Number 162,123, effective May 12, 1987.*
distance between hydrants. A 2 ½-inch by 4-inch double fire hydrant or 4-inch by 4-inch double fire hydrant is required. Furthermore, all first story portions of any commercial or industrial building must be within 300 feet of an approved hydrant.

Division 9 (Section 57.09.06) also establishes fire flow standards. Fire flow is defined as the quantity of water available or needed for fire protection in a given area and is normally measured in gallons per minute (gpm), as well as duration of flow. The determination of fire flow adequacy varies, depending on the type of land use (with greater intensity land uses requiring higher flows from a greater number of hydrants), life hazard, occupancy, and the degree of fire hazard. The specific public fire flow requirements for a project are determined by LAFD. Typically, per Division 9, the fire flow for commercial and industrial buildings is between 6,000 and 9,000 gpm from four to six hydrants flowing simultaneously. The fire flow required for high density commercial or industrial buildings is 12,000 gpm available to any block. A minimum residual water pressure of 20 pounds per square inches (psi) is required to remain in the water system in addition to the required gpm flowing. Furthermore, the LA FD sets forth further fire flow requirements for private or on-site water infrastructure. Please refer to Section IV.I.1, Water Supply, of this Draft EIR for further discussion of impacts related to existing water infrastructure.

Additionally, Division 9 (Section 57.09.08) also requires that all smoke-control systems be tested prior to the Certificate of Occupancy and provides for supplemental fire protection in which equipment and systems not otherwise required in the LAMC may be required by the LA FD. The Chief of the LA FD may also require the provision of additional fire protection.

Division 118 of the Fire Code classifies buildings where the highest floor level is more than 75 feet above the lowest point of fire access as high-rises. Buildings classified as high-rise are subject to specific requirements for fire safety, including the provision of a rooftop helipad. The project would include the development of buildings up to 247.5 feet in height, with the highest floor levels more than 75 feet above the emergency vehicle access lane that runs through the site. Thus, these buildings would be subject to the fire safety requirements relating to high-rises. Specifically, Division 118 requires the installation of automatic sprinkler systems in all new high-rise buildings as well as a rooftop emergency helicopter landing facility for each building in a location approved by the Fire Department Chief. Division 118 also requires that each high-rise building include a Fire Control Station that contains a public address system and telephones for LA FD use, a fire detection and

20 C.A. Fry, Assistant Fire Marshal, City of Los Angeles Inter-Departmental Correspondence to the Department of City Planning from the Los Angeles Fire Department, November 20, 2007.
fire alarm system, an elevator recall switch and a status panel for all elevator cars, sprinkler control system, standby power and emergency electrical power controls, controls for unlocking stairshaft doors, smoke evacuation and fan controls, stairway pressurization control switches, and status indicators for fire pumps and water supply. Furthermore, under Division 118, in high rise buildings, a sound-powered telephone communication system shall be located at every floor in each enclosed exit stairway, at every exterior location where an enclosed stairway exits to a public way, on the roof, and in every elevator car. In addition, a high-rise building must have at least one emergency and fire control elevator in each bank of elevators (Section 57.118.05), a dependable method of sounding a fire alarm throughout the building (Section 57.118.06), an emergency smoke control system (Section 57.118.07), a standby and emergency power system (Section 57.118.08), stairshaft doors for fire department use (Section 57.118.09), pressurized stairshafts (Section 57.118.10), and other devices operable from the Control Station, as previously listed.

Fire Code Division 119 requires an annual inspection of high-rise buildings. Inspection includes the evaluation of physical access, property condition, and all fire-safety facilities and equipment required under the LAMC Fire and Building Codes. Annual fire safety inspections are required for fire warning systems, central station signaling systems, smoke management systems, elevators, emergency generator and lighting systems, fire doors, fire pumps, pressure reducing valves, and fire escapes. Under LAMC Chapter 9, Section 91.905.15, all smoke control systems shall be tested prior to the issuance of a Certificate of Occupancy upon building occupancy, all operating parts of the smoke-control systems and automatic fire extinguishing systems shall be retested every six months in accordance with the retest requirements established by the Department of Building and Safety and the LAFD.

The LAFD Fire Prevention Bureau also administers guidelines for the Sequence of Operations for Life Safety Systems in High-Rise Buildings. These guidelines address the management of life-safety systems and facilities, including a sequence of procedures involving monitoring and management of audible and visual alarm signals; elevator lobby smoke detectors; duct smoke detectors; elevator shaft smoke/heat detectors; sprinkler valve flow switches; and smoke/fire dampers on each floor. The Fire Code also requires stairway numbering on each floor, roof access, and fire safety signage on all floors in prescribed locations.

(d) City Propositions F and Q

The City of Los Angeles Fire Facilities Bond (Proposition F), approved by voters in November 2000, allocates $378.6 million of funds to build 19 new or replacement fire/paramedic facilities. The September 2007 completion and opening of Fire Station
No. 84 near the project site was one of the 19 fire facility projects funded by Proposition F.21

Proposition Q, the Citywide Public Safety Bond Measure, approved by voters in March 2002, allocates $600 million to renovate, improve, expand and construct police, fire, 911, and paramedic facilities.22 Proposition Q involves 13 overall projects consisting of the construction and/or replacement of five new police stations, one new police station & jail, two bomb squad facilities, one Metro Detention Center, one new Emergency Operations/Dispatch Center, one Valley Traffic Division and Bureau Headquarters, renovation of existing fire facilities, and renovation of police facilities. Proposition Q provides funding for minor construction improvements (e.g., installation of HVAC systems, driveway resurfacing) for Fire Stations No. 72 and No. 105.23

3. Project Impacts

a. Methodology

Project impacts regarding fire services are evaluated by the LAFD on a project-by-project basis. A project’s land use, fire-related needs, and whether the project site meets the recommended response distance and fire safety requirements as well as project design features which would reduce or increase the demand for fire protection services are taken into consideration. Beyond the standards set forth in the Los Angeles Fire Code, consideration is given to the project size and components, required fire-flow, response time, and response distance for engine and truck companies, fire hydrant sizing and placement standards, access, and potential to use or store hazardous materials. Further evaluation of impacts considers whether or not the development of the project would create the need for a new fire station or expansion, relocation, or consolidation of an existing facility to accommodate increased demand. Consultation with the LAFD is also conducted to determine the project’s effect on fire protection and emergency medical services.

23 Ibid.
b. Significance Thresholds

Appendix G of the CEQA Guidelines provides a sample question that addresses impacts with regard to fire protection service. This question is as follows:

Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered government facilities, need for new or physically altered governmental facilities, the construction of which would cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

- Fire Protection?

In the context of this question from Appendix G of the CEQA Guidelines, the City of Los Angeles CEQA Thresholds Guide states that a project would normally have a significant impact on fire protection services if it:

- Requires the addition of a new fire station or the expansion, consolidation or relocation of an existing facility to maintain service.

In addition, according to the City of Los Angeles CEQA Thresholds Guide, the determination of significance for impacts associated with emergency preparedness shall be made on a case-by-case basis, considering the following factor:

- The degree to which the project may require a new, or interfere with an existing, emergency response or evacuation plan, and the severity of the consequences.

The City of Los Angeles CEQA Thresholds above are used in the following analysis.

c. Project Design Features

(1) Construction

During project construction, the project would provide the following project design features to address fire protection and life safety:

Project Design Feature G.1-1 – Construction Fire Safety Training: Construction managers and personnel would be trained in emergency response and fire safety operations;
Project Design Feature G.1-2 – Construction Fire Suppression Equipment: Fire suppression equipment specific to construction would be maintained on-site in accordance with OSHA and Fire Code requirements;

Project Design Feature G.1-3 – Construction Staging and Traffic Management Plan: A construction staging and traffic management plan shall be prepared and implemented, wherein traffic management personnel (flag persons) and appropriate detour signage would be employed as necessary to ensure emergency access is maintained to the project site consistent with LAFD requirements and that traffic flow is maintained on street right-of-ways.

(2) Operation

During operation, the project would comply with applicable LAMC fire safety requirements for building construction, including LAMC Chapter 9 (Building Code) and Chapter 7 (Fire Code). Specifically, the project would include, but not be limited to, the following project design features to address fire protection and life safety:

Project Design Feature G.1-4 – Adequate Emergency Exit: Adequate means of egress (e.g., clearly marked and unobstructed exits) for all occupants on the project site shall be provided.

Project Design Feature G.1-5 – Automatic Sprinkler Systems: All buildings and parking structures would be equipped with hydraulically designed and electronically supervised automatic sprinkler systems.

Project Design Feature G.1-6 – Fire Department Standpipes: Standpipes would be included within buildings that have a floor level of 30 feet or more above the lowest level of fire department vehicle access.24 The standpipes would be located within the stairwells and designed in accordance with the National Fire Protection Association (NFPA) 14: Standard for the Installation of Standpipes and Hose Systems.

Project Design Feature G.1-7 – Fire Alarm Systems: All buildings will be equipped with fire alarm systems designed to alert alarm, supervisory, and trouble signals. The alarm signal provides indication of a fire or any other emergency condition in the building. The supervisory signal would indicate if a required fire extinguisher is

24 Standpipes are vertical pipes to which fire hoses can be connected.
not in full working order, while the trouble signal would indicate the portion of the fire protection system that is not functioning properly (e.g., faulty electrical wire). The fire alarm systems would be programmed to annunciate alarm conditions on a building by building basis and would be electronically supervised. Occupant notification systems would be installed in various locations as required by the Fire Code. In addition, all high rise buildings would have an emergency voice/alarm communication system.

Project Design Feature G.1-8 – Automatic Smoke Detection: Smoke detectors would be installed in various locations, including but not limited to within the hotel, office, and other high rise buildings.

Project Design Feature G.1-9 – Portable Fire Extinguishers: As an additional aid for the control of accidental fires, portable fire extinguishers would be located in the buildings as required by the Fire Code (e.g., within 30 feet of commercial cooking equipment).

Project Design Feature G.1-10 – Egress Lighting and Exit Signage: Egress lighting and exit lighting would be installed within the buildings and connected to an approved emergency power source to provide continued illumination for a minimum of 90 minutes after primary power loss.

Project Design Feature G.1-11 – Emergency Power System: An emergency source of power (e.g., emergency generator) would be provided to operate required equipment in the event of power failure. The emergency power system would operate upon loss of power to the building within 10 seconds supplying each of the following systems: means of egress lighting, exit signage, fire alarm control panel(s) and associated devices, emergency voice/alarm systems, and elevator car lighting for the high rise buildings.

Project Design Feature G.1-12 – Fire Safety for High-rise Buildings: All high-rise buildings shall comply with Division 118 of the Fire Code and provide:

- A rooftop emergency helicopter landing facility,
- A Fire Control Station that contains a public address system and telephones for LAFD use,
- A fire detection and fire alarm system,
- An elevator recall switch and a status panel for all elevator cars,
• Sprinkler control system,
• Standby power and emergency electrical power controls,
• Controls for unlocking stairshaft doors,
• Smoke evacuation and fan controls,
• Stairway pressurization control switches, and
• Status indicators for fire pumps and water supply.

Furthermore, under Division 118, a sound-powered telephone communication system shall be located at every floor in each enclosed exit stairway, at every exterior location where an enclosed stairway exits to a public way, on the roof, and in every elevator car, an emergency and fire control elevator in each bank of elevators in conformance with the Fire Code, a dependable method of sounding a fire alarm throughout the building, an emergency smoke control system, a standby and emergency power system, stairshaft doors for fire department use, pressurized stairshafts, and other devices operable from the Control Station, as previously listed. Stairways for high rises would be numbered on each floor, and fire safety signage on all floors would be placed in required locations. Access to the roof would be made available in fire emergencies. Fire safety information would also be distributed to all project tenants.

Project Design Feature G.1-13 – Plot Plan Review by LAFD: A plot plan of the project would be submitted to LAFD for approval prior to the recordation of the final map or the approval of a building permit. The plot plan would include the following minimum design features:

• Fire lanes, where required, would be a minimum of 20 feet in width clear to sky, posted with a sign of no less than three square feet in area and/or painted with “Fire Lane No Parking”, and have an adequate approved turning area; when a fire lane must accommodate the operation of Fire Department aerial ladder apparatus or where fire hydrants are installed, those portions would not be less than 28 feet in width;

• No building or portion of a building would be constructed more than 150 feet from the edge of a roadway, of an improved street, access road, or designated fire lane, unless otherwise approved by the LAFD;
• Access for LAFD apparatus and personnel to and into all structures would be provided;

• Locations and dimensions of turning areas. Standard cut corners would be used in all turns;

• Roadways through the site would be a minimum of 20 feet in width clear to the sky; no more than 15 percent in grade; constructed to meet the roadway dimension requirements of the Department of Public Works; and maintained in an unobstructed manner;

• Locations and sizes of all fire hydrants; and

• All structures would be within 300 feet of an approved fire hydrant.

Project Design Feature G.1-14 – Fire Access: Since some exterior walls of the project buildings would be farther than 150 feet from the public street, the project would provide an approximately 30-foot wide internal emergency fire lane that would curve along the eastern site boundary from Owensmouth Avenue to Erwin Street. Additionally, if further improvements to the project site’s internal access roads become necessary, such improvements would be reviewed and approved to the satisfaction of the LAFD.

Project Design Feature G.1-15 – Fire Flow Requirements: In accordance with LAFD requirements, a minimum public hydrant fire flow of 9,000 to 12,000 gpm would be provided from four to six hydrants flowing simultaneously. The project Applicant would consult and coordinate further with LADWP and LAFD during the development of the project plans to ensure that adequate private on-site fire hydrant flow is provided prior to the issuance of a building permit. Additionally, if further improvements to the water system become necessary, such improvements would be reviewed and approved to the satisfaction of the LAFD.

Project Design Feature G.1-16 – Fire Service Connections: The project’s on-site fire protection system would include at minimum three fire service connections to meet the on-site fire flow requirement. The existing 10-inch and 8-inch fire service connections along Victory Boulevard to the north could be utilized. The third connection would be a new 8-inch connection to create a looped fire protection system throughout the project site. The location of the new third connection would be influenced by the water pipeline layout of the on-site fire
IV.G.1. Public Services - Fire Protection

protection system and would be determined at the time of final LAFD plan review.

In addition, to the regulatory requirements above, the following Project Design Features would be implemented to address potential safety hazards associated with the member-only fueling station.

Project Design Feature G.1-17 – Member-Only Fueling Station Safety Features:
The member-only fueling station would be designed in accordance with local, state, and federal requirements and installed by state certified installation contractors. Specific features and requirements would include, but would not be limited to, the following:

- Trained employees and supervisors would be present on-site during all hours of operation;

- Senior management in the anchor retail store would be present on-site during all hours of operation for the member-only fueling station. These managers would be equipped with a roam telephone programmed to receive calls from the fueling facility;

- A 911 telephone that automatically contacts emergency dispatch would be present on-site in addition to a regular telephone line and roam phones;

- Employees would be trained to identify maintenance requirements and physically inspect the fuel islands regularly during operating hours. This training would include spill clean-up and emergency response procedures consistent with applicable local, state, and federal regulatory requirements. Should the system require attention beyond what the trained site person could address, the local authorized and certified service contractor would be contacted and dispatched to repair the system;

- Emergency shutoff equipment would be installed in accordance with the Fire Code and each fueling station would be equipped with an automatic shutoff valve, fire extinguishers, and leak detection sensors;

- Closed circuit television monitor cameras would be installed to show all fueling positions and equipment enclosures to allow for full-time monitoring of the fueling operation;
• The tank and piping monitoring system would include visual and audible alarms to alert employees in the event of an emergency and each fueling station would be equipped with an automatic shutoff valve, fire extinguishers, and leak detection sensors;

• The fueling station tank and piping system would be certified to meet applicable local, state, and federal Underground Storage Tank (UST) requirements, including leak detection standards. The piping system would also be certified by the California State Water Resources Control Board;

• An independent security company would monitor the anchor retail warehouse alarm system, including the alarm associated with the fueling station;

• The storm drainage system for the fueling facility area would be designed in accordance with State of California Best Management Practices for water quality treatment standards. Stormwater from the fueling area would be isolated and would be directed to a catch basin and processed through an oil/water separator prior to discharge to the downstream system;

• The underground tank and piping control units for the fueling station would be housed inside the controller enclosure. The enclosure would contain the power console, the dispenser interface unit, the submersible pump variable speed controllers, and the monitoring system console. An air conditioner mounted on the side of the enclosure would have a preset thermostat to maintain a safe operating temperature;

• The USTs and all containment sumps, including the dispenser sumps would consist of double-walled fiberglass. Fiberglass is used for its corrosion resistance and plasticity. The double-walled storage tank system would include a hydrostatic interstitial space sensor that monitors the primary and secondary tank walls. If a tank wall is compromised, the interstitial sensor would immediately shut down the product delivery system and activate a visual/audible alarm;

• The USTs would be secured in place with anchoring straps (tie-downs) connected to concrete blocks. The entire tank excavation hole would be backfilled with pea gravel and capped with an 8-inch-thick reinforced concrete slab (overburden). The tie-downs,
together with the overburden, would overcome any possible buoyancy factors and resist buckling under hydrostatic pressures;

- All product, vapor and vent piping would be non-corrosive and provide three levels of protection. First, all product piping would be monitored with pressure line leak detection. Second, all piping would be double wall to provide secondary containment. Third, all fiberglass piping would be additionally monitored under vacuum per California 2481 regulations such that if a breach is detected in the vacuum, the product delivery system would shut down and system would sound audible alarm;

- All piping connections to the tanks and dispensers would be flexible. Flexible connectors would be used to reduce risk of rupture from any form of ground movement;

- All piping would slope to the sumps at the USTs. If a piping leak occurred, the gasoline would flow through the secondary pipe to the sump, where a sensor would be triggered to immediately shut down the system and activate an audible/visual alarm;

- All tanks and dispensers would be equipped with Phase I and Phase II Enhanced Vapor Recovery (EVR) vapor recovery air pollution control equipment technology per local, state, and federal regulatory requirements. Phase I vapor recovery shall be used at the underground tank fill ports. This will reduce vapor release to the air associated with refueling underground storage tanks. Phase II vapor recovery shall be used at the product dispensers. This system will reduce vapor release to the air typically associated with refueling of vehicles;

- The UST monitoring system would incorporate automatic shutoffs. If gasoline is detected in the sump at the fuel dispenser, the dispenser would shut down automatically and an alarm would be sounded. If a problem is detected with a tank, the tank would be automatically shut down and an alarm would be sounded. If the product piping system detects a failure of the 0.1 gallons per hour (GPH) test, the line would be automatically shut down and the alarm would be sounded. Pursuant to current federal requirements, monitoring equipment must be able to detect a minimum leak of 3 GPH (equivalent to the accuracy of a mechanical leak detector). By providing monitoring to a higher
standard (0.1 vs. 3), the fueling station would maintain a higher degree of safety than required by current federal requirements; and

- Each dispenser sump would be equipped with an automatic shutoff valve to protect against vehicle impact. In addition, each fuel hose would include a poppeted breakaway device that would stop the flow of fuel at both ends of the hose in the event of an accidental drive-off. Also, each dispenser would be equipped with internal fire extinguishers. Lastly, all dispensers would include leak detection sensors connected to the alarm console inside the controller enclosure.

d. Analysis of Project Impacts

(1) Construction

Construction activities would have the potential to temporarily increase the existing demand on fire protection and emergency medical services. Construction activities could potentially expose combustible materials (e.g., wood, plastics, sawdust, coverings and coatings) to fire risks from machinery and equipment sparks, exposed electrical lines, chemical reactions in combustible materials and coatings, and lighted cigarettes. However, in compliance with Occupational Safety and Health Administration (OSHA) requirements, construction managers and personnel would be trained in emergency response and fire safety operations. Additionally, fire suppression equipment (e.g., fire extinguishers) specific to construction would be maintained on-site. Project construction would also comply with requirements and policies relating to fire safety practices. Therefore, construction impacts on fire protection and emergency medical services would be less than significant.

Short-term construction activities, such as lane closures, sidewalk closures, and utility line construction, could affect adjacent street right-of-ways and thus, could have implications in relation to response time for emergency vehicles due to travel time delays. Construction activities would also generate traffic associated with the movement of construction equipment, hauling of demolition and graded materials, and employee traffic. As such, construction activities could increase response time for emergency vehicles due to travel time delays caused by traffic. However, the project would implement a construction staging and traffic management plan during construction, wherein traffic management personnel (flag persons) would be employed as necessary to ensure emergency access is maintained to the project site consistent with LAFD requirements and that traffic flow is maintained on street right-of-ways. This construction staging and traffic
management plan is discussed in detail in Section IV.H, Traffic, Access, and Parking, of this Draft EIR. Further, appropriate detour signage would be employed as necessary to ensure that emergency access is maintained to the project site and that traffic flow is maintained on street right-of-ways. Since the project would comply with the above Project Design Features and regulatory requirements, emergency access to the site and along adjacent roadways would remain clear and unobstructed during construction of the project. Thus, construction impacts related to emergency response or an emergency evacuation plan would be less than significant.

(2) Operational Impacts

(a) Capability of Fire Protection and Emergency Medical Services

The project would be primarily served by Fire Station No. 72, the “first-in” station to the project site. The project does not include the development of new residential units which would generate a new residential population in this fire station’s service area. However, the project’s commercial components (i.e., retail, restaurant, grocery store, office, and hotel uses) and the cultural/community component would increase the daytime population of the station’s service area. Specifically, the project would generate a daytime population of approximately 3,201 persons associated with patrons, employees, hotel guests, and visitors as shown in Table IV.G-3 on page 639. This includes a daytime population of approximately 1,093 persons that would be generated during Phase 1 and approximately 2,108 persons that would be generated during Phase 2.

This daytime population would increase the demand for LAFD fire protection and emergency medical services. However, given that the project would be located within close proximity (1.3 miles) of Fire Station No. 72 and that this fire station’s average response time is less than the Citywide average, impacts relative to the LAFD’s capability to provide adequate fire protection services would be less than significant. In addition, Fire Stations No. 105 and No. 84 would also be available to serve the project site in the event of an emergency. Furthermore, the project would submit a plot plan for approval by the LAFD

25 The proposed project’s non-residential daytime population was estimated based on police service factors contained in the City of Los Angeles CEQA Thresholds Guide in Section K.1, Police Protection.
Table IV.G-3
Daytime Population Associated Within the Project

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Quantity</th>
<th>Factor a</th>
<th>Service Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor Retail</td>
<td>165,759 sf</td>
<td>3 persons/1,000 sf</td>
<td>497</td>
</tr>
<tr>
<td>Shopping Center Retail</td>
<td>166,660 sf</td>
<td>3 persons/1,000 sf</td>
<td>500</td>
</tr>
<tr>
<td>Restaurant</td>
<td>32,075 sf</td>
<td>3 persons/1,000 sf</td>
<td>96</td>
</tr>
<tr>
<td>Subtotal Phase 1</td>
<td>364,494 sf</td>
<td></td>
<td>1,093</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2</th>
<th>Quantity</th>
<th>Factor a</th>
<th>Service Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopping Center Retail</td>
<td>112,325 sf</td>
<td>3 persons/1,000 sf</td>
<td>337</td>
</tr>
<tr>
<td>Restaurant</td>
<td>21,560 sf</td>
<td>3 persons/1,000 sf</td>
<td>65</td>
</tr>
<tr>
<td>Grocery Store</td>
<td>36,765 sf</td>
<td>3 persons/1,000 sf</td>
<td>110</td>
</tr>
<tr>
<td>Hotel (275 rooms)</td>
<td>193,600 sf</td>
<td>1.5 persons/room/day</td>
<td>413</td>
</tr>
<tr>
<td>Office</td>
<td>285,000 sf</td>
<td>4 persons/1,000 sf</td>
<td>1,140</td>
</tr>
<tr>
<td>Community/Cultural</td>
<td>14,250 sf</td>
<td>3 persons/1,000 sf</td>
<td>43</td>
</tr>
<tr>
<td>Subtotal Phase 2</td>
<td>663,500 sf</td>
<td></td>
<td>2,108</td>
</tr>
<tr>
<td>Total</td>
<td>1,027,994 sf</td>
<td></td>
<td>3,201</td>
</tr>
</tbody>
</table>

* The project’s non-residential daytime population was estimated based on police service factors contained in the City of Los Angeles CEQA Thresholds Guide in Section K.1, Police Protection.

Source: Matrix Environmental, 2011.

either prior to the recordation of the final map or the approval of a building permit to ensure that LAFD has review of site plans for access before any portion of the project is built.

Based on the above, impacts with regard to the capability of fire protection services and emergency medical services would be less than significant with compliance with the above Project Design Features and regulatory requirements.

(b) Fire Response Distance, Fire Flow, and Access Requirements

A project’s impact on fire services is determined in part by its compliance with the applicable provisions of the Fire Code and the Building Code. A project that closely complies with the applicable provisions is less likely to cause any significant impacts to fire services. As indicated by the LAFD, the project must address the following requirements related to fire response distance, fire flow, and firefighting personnel and apparatus access as set forth in the Fire Code.
(i) **Fire Response Distance**

For the project, the LAFD has indicated that the maximum fire response distance to the project site for the “first-in” engine company should be one mile and 1.5 miles for the “first-in” truck company, which is consistent with Division 9 of the Fire Code. When response distances exceed these recommendations, all structures must be equipped with automatic fire sprinkler systems and any other fire protection devices deemed necessary by the Fire Chief (e.g., fire signaling systems, fire extinguishers, smoke removal systems, etc.). Fire Station No. 72, which is the “first-in” station for the project, is located approximately 1.3 miles from the project site and equipped with an engine company and truck company. As such, the project would not be within LAFD’s maximum response distance of one mile for a “first-in” engine company, but would be within LAFD’s maximum response distance of 1.5 mile from a “first-in” truck company. Thus, per Section 57.09.07, the project would be required to provide for the installation of automatic sprinkler systems throughout all new buildings. As discussed above, the project would include the installation of automatic sprinkler systems (see subsection 3.c, Project Design Feature G.1-5) throughout the buildings. Thus, impacts with regard to fire response distance would be less than significant.

(ii) **Fire Flow**

Based on a preliminary review of the project site plans, LADWP has determined that the required off-site public fire hydrant flow for the project is a minimum of 9,000 to 12,000 gpm from four to six hydrants flowing simultaneously. A minimum residual water pressure of 20 psi is required to remain in the water system in addition to the required gpm flowing. Based on hydraulic simulations conducted using computer models, it was determined that the existing water system surrounding the project site would be adequate to meet the public hydrant fire flow requirement of 9,000 to 12,000 gpm flowing simultaneously from four to six hydrants. Specifically, the computer models indicate that at a flow of 9,000 gpm from four hydrants (each flowing at 2,250 gpm), the water system would have a residual pressure of 45 psi and at a flow of 12,000 gpm from six hydrants (each flowing at 2,000 gpm), the water system would have a residual pressure of 50 psi.

26 *City of Los Angeles Inter-Departmental Correspondence to the Department of City Planning from the Los Angeles Fire Department, November 20, 2007.*

27 *E-mail Communication from Gayle Glauz of Los Angeles Department of Water and Power, May 13, 2008.*

While public off-site fire hydrant flow requirements have been determined, the LAFD has not yet established the private on-site fire hydrant flow for the project.29 Based on consultation with the LAFD, the private on-site fire hydrant flow requirement would be a minimum of 6,000 gpm from four hydrants flowing simultaneously.30 Based on the hydraulic simulations, it is anticipated that four fire service connections would be needed to meet this private on-site fire flow requirement. The existing 10-inch and 8-inch fire service connections along Victory Boulevard to the north could be utilized.31 In addition to these two connections, it is anticipated that two additional 8-inch connections would be needed to create a looped fire protection system through the project. The location of a third connection is recommended to be to the south of the project site along Erwin Street or at the south end of Topanga Canyon Boulevard. A fourth connection is also anticipated to be provided at Owensmouth Avenue to provide service to the anchor retail building. The location of these connections would be influenced by the water pipeline layout of the on-site fire protection system and would be determined at the time of final LAFD plan review. As requested by the LAFD, the project Applicant would consult and coordinate further with LADWP and LAFD during the development of the project plans to ensure that adequate private fire hydrant flow is provided prior to the issuance of a building permit.

Furthermore, if additional off-site public and on-site private fire hydrants are required to meet fire flow requirements, the number, sizes, and locations of such hydrants would be determined after LAFD’s review of the plot plan. Hydrants would be installed prior to building construction. The plot plan, showing hydrants and access, would be prepared and submitted for approval by the LAFD either prior to the recordation of the final map or the approval of a building permit. Additionally, if further improvements to the water system and/or roadways become necessary, such improvements would be reviewed and approved to the satisfaction of the LAFD. With the incorporation of Project Design Features and compliance with regulatory requirements, impacts on fire flow would be less than significant.

\textit{(iii) Firefighting Access}

As discussed above, the project Applicant would submit a plot plan for approval by the LAFD either prior to the recordation of the final map or the approval of a building permit. The plot plan would include, at minimum, the following design features: fire lanes, where required, would be a minimum of 20 feet in width clear to sky, posted and/or painted with

29 Op. cit.
30 \textit{Los Angeles Fire Department, October 7, 2008 meeting with Inspector Terrance O'Connell.}
31 \textit{Ibid.}
“Fire Lane No Parking”, and have an adequate approved turning area; when a fire lane must accommodate the operation of Fire Department aerial ladder apparatus or where fire hydrants are installed, those portions would not be less than 28 feet in width; no building or portion of a building would be constructed more than 150 feet from the edge of a roadway, of an improved street, access road, or designated fire lane, unless otherwise approved; access for LAFD apparatus and personnel to and into all structures would be provided; roadways through the site would be a minimum of 20 feet in width clear to the sky, no more than 15 percent in grade, constructed to meet the roadway dimension requirements of the Department of Public Works, and maintained in an unobstructed manner; and all structures would be within 300 feet of an approved fire hydrant. Specifically, as discussed above, the project would provide a minimum 30-foot wide internal emergency fire lane that would curve along the eastern site boundary from Owensmouth Avenue to Erwin Street. Parking restrictions would be posted and/or painted along this emergency fire lane.

Further, as discussed above, the project would provide improvements to the water system, including the installation of hydrants prior to building construction, as necessary to the satisfaction of the LAFD. As such, the project would comply with the City Framework standard and access requirements of Fire Code Division 9 (Section 57.09.06) and the LAFD.

Division 118 of the Fire Code classifies buildings where the highest floor level is more than 75 feet above the lowest point of fire access as high-rises. Buildings classified as high-rise are subject to specific requirements for fire safety, including the provision of a rooftop helipad. The project would include the development of buildings up to 247.5 feet in height, with the highest floor levels more than 75 feet above the emergency vehicle access lane that runs through the site. Therefore, these buildings would be subject to Fire Code Division 118 fire safety requirements relating to high-rises. As described in subsection c, Project Design Features, all high-rise buildings for the project would comply with such requirements and would provide features, including but not limited to a rooftop emergency helicopter landing facility; a Fire Control Station; a fire detection and fire alarm system; an elevator recall switch and a status panel for all elevator cars; sprinkler control system; standby power and emergency electrical power controls; controls for unlocking stairshaft doors; smoke evacuation and fan controls; stairway pressurization control switches; and status indicators for fire pumps and water supply; a sound-powered telephone communication system; an emergency and fire control elevator in each bank of elevators; a dependable method of sounding a fire alarm throughout the building; an emergency smoke control system; a standby and emergency power system, stairshaft doors for fire department use, pressurized stairshafts; and other devices operable from the Control Station, as previously described in Project Design Feature G.1-12. Stairways for high rises would be numbered on each floor, and fire safety signage on all floors would be placed in required locations. Access to the roof would be made available in fire emergencies. Fire
safety information would also be distributed to all project tenants. Consistent with Fire Code Division 119, the project's high-rise buildings would undergo an annual inspection including the evaluation of physical access, property condition, and all fire-safety facilities and equipment required under the LAMC Fire and Building Codes.

Based on the above, the project would comply with applicable LAFD code and ordinance requirements as well as the Project Design Features outlined above and would have a less than significant impact relative to firefighting access for personnel and apparatus.

(c) Emergency Response Times

Project-related increase in traffic on surrounding roadways could have an impact on fire protection and emergency medical services if the response capabilities of the LAFD are impeded. However, due to the proximity of Fire Station No. 72 (1.3 mile) and the other two supporting stations to the site, emergency response times to the project site are not expected to significantly increase. Section IV.H, Traffic, Access, and Parking, of this Draft EIR demonstrates that project development would result in a less than significant impact on access. Although additional traffic generated by the project could potentially cause delays in LAFD emergency response times, the additional traffic would not significantly impact emergency vehicle access or response times, including along Topanga Canyon Boulevard, which is a City-designated disaster route. In addition, while the project would result in an increase volume to capacity ratios relative to baseline conditions at 11 intersections, the volume to capacity ratio at the remaining 27 intersections would be similar or actually decrease relative to baseline conditions as a result of implementation of the project. Furthermore, emergency access to the project site and surrounding uses would be maintained at all times and emergency vehicles would have priority and the ability to bypass signals and stopped traffic. In addition, emergency vehicles are equipped with sirens and, as such, are able to navigate around traffic. Thus, project-related traffic is not anticipated to impair the LAFD from responding to emergencies at the project site. Finally, as described above, the project would provide adequate access for emergency vehicles to the project site subject to the approval of the LAFD. Therefore, the project’s potential impacts related to emergency response times would be less than significant with implementation of the above Project Design Features and regulatory requirements.

(d) Environmental Hazards Associated with Member-Only Fueling Station

The proposed member-only fueling station would be located adjacent to the main anchor retail structure and would be comprised of a five-island gasoline facility with a total of 20 fueling positions. Three underground gasoline storage tanks would be installed, each with a 30,000 gallon capacity. The anticipated annual output would be approximately
14,400,000 gallons of gasoline per year. The member-only fueling stations would be fully-automated and self-serve. The use and storage of gasoline on-site would have the potential to increase the demand for LAFD services. In the event of a gasoline spill, FM-168-2 would be utilized to denature the gasoline.32 All spill cleanup materials using the FM-186-2 solution are treated as hazardous waste in California and, as such, are placed in hazmat drums for pickup by a registered hazmat hauler. In addition, used fuel filters are also disposed of as hazardous waste. All spill cleanup activities and disposal activities would be completed in accordance with all applicable regulatory requirements. In addition, as discussed above, the member-only fueling station would be designed in accordance with local, state, and federal requirements and would include numerous project design features (including specially trained employees and managers, emergency shutoff switches, tank and piping monitoring systems, and leak detection sensors) to minimize the potential environmental safety hazards and the associated demand for fire and emergency medical services. Thus, with implementation of the regulatory requirements and Project Design Features above, impacts would be less than significant.

4. Cumulative Impacts

Section III, Environmental Setting, of this Draft EIR, identifies 37 related projects within the project area. Of the 37 related projects, 18 are located in the service district of Fire Station No. 72, the “first-in” station to the project site as shown in Table IV.G-4 on page 645. The 18 related projects, which consist of Related Project Nos. 1, 2, 3, 4, 5, 6, 7, 10, 20, 23, 30, 31, 32, 33, 34, 35, 36, and 37, include various residential, retail, restaurant, and office uses. These related projects, in conjunction with the project, would cumulatively generate the need for additional fire protection and emergency medical services. The 18 identified related projects would result in the development of 3,888 residential units and approximately 11,041 residents. Thus, these related projects would increase the residential service population of Fire Station No. 72 by approximately 11,041 residents, which represents approximately 17 percent of the 2016 SCAG forecasted population for the service area of Fire Station No. 72 (66,259 people). A portion of the residential growth associated with the related projects is already accounted for in the population projections made by SCAG. In addition, the project would not develop residential units, and thus would not generate a residential population. Thus, the project would not contribute to a cumulative increase in Fire Station No. 72’s residential service population.

32 FM-186-2 is a water-based, pH neutral solution that quickly breaks down and encapsulates hydrocarbons.
Table IV.G-4
Cumulative Fire Service Population

<table>
<thead>
<tr>
<th>Map No. a</th>
<th>Related Project</th>
<th>Location</th>
<th>Non-Residential Population</th>
<th>Residential Population b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Westfield Shoppingtown Center</td>
<td>6600 Topanga Canyon Blvd.</td>
<td>1,796</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Trillium Health Club (expansion)</td>
<td>6300 Canoga Ave.</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>The Plaza</td>
<td>6250 Canoga Ave.</td>
<td>30</td>
<td>1,707</td>
</tr>
<tr>
<td>4</td>
<td>Kittridge/Variel Apartments</td>
<td>6700 Variel Ave.</td>
<td>0</td>
<td>1,244</td>
</tr>
<tr>
<td>5</td>
<td>Trammel Crow Residential</td>
<td>6355 De Soto Ave.</td>
<td>0</td>
<td>869</td>
</tr>
<tr>
<td>6</td>
<td>Rew Holdings LLC</td>
<td>6219 De Soto Ave.</td>
<td>0</td>
<td>2,496</td>
</tr>
<tr>
<td>7</td>
<td>Avalon Bay Canoga Park</td>
<td>21050 Vanowen St.</td>
<td>0</td>
<td>596</td>
</tr>
<tr>
<td>10</td>
<td>McDonalds and Starbucks</td>
<td>21355 Sherman Way</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>The Commons at Winnetka</td>
<td>20122 Vanowen St.</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Vanowen and Corbin Shopping Center</td>
<td>19701 Vanowen St.</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Office and Retail</td>
<td>6464 Canoga Ave.</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>Chevron Service Station</td>
<td>6061 Topanga Canyon Blvd.</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>Crate and Barrel</td>
<td>6700 Topanga Canyon Blvd.</td>
<td>144</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>Archstone Warner Center</td>
<td>6625 Variel Ave.</td>
<td>0</td>
<td>1,482</td>
</tr>
<tr>
<td>34</td>
<td>Residential Project</td>
<td>6660 Variel Ave.</td>
<td>0</td>
<td>554</td>
</tr>
<tr>
<td>35</td>
<td>Residential Project</td>
<td>6700 Eton Ave.</td>
<td>0</td>
<td>1,244</td>
</tr>
<tr>
<td>36</td>
<td>Avalon Warner Park</td>
<td>6701 Eton Ave.</td>
<td>0</td>
<td>849</td>
</tr>
<tr>
<td>37</td>
<td>24-Hour Fitness Warner Center</td>
<td>6410 Canoga Ave.</td>
<td>141</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Project Total</th>
<th>2,364</th>
<th>11,041</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Net Total</td>
<td>3,201</td>
<td>0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>5,565</td>
<td>11,041</td>
</tr>
</tbody>
</table>

a Corresponds with Map Nos. on Figure III-1 in Section III, Environmental Setting, of this Draft EIR.
b Residential population was determined by multiplying the number of residential units by the average household size of 2.84 persons, which is based on SCAG’s 2008 Regional Transportation Plan (RTP), estimated 2016 average household size per unit within the Canoga Park – Winnetka - Woodland Hills - West Hills Community Plan.

Source: Matrix Environmental, 2011.

The related projects would also result in an increase of retail, restaurant, hotel, and office uses, which would generate a non-residential daytime population of approximately 2,364 persons. When combined with the project’s non-residential daytime population of approximately 3,201 persons, the cumulative non-residential population would be approximately 5,565 persons, which would increase the demand on LAFD services.
However, similar to the project, related projects would be reviewed by the LAFD to ensure that sufficient fire safety and hazards measures are implemented to reduce potential impacts to fire services and environmental safety. In addition, each related project would be required to comply with regulatory requirements related to fire protection and emergency medical services and hazards. Furthermore, project-related impacts on fire protection services and hazards would be less than significant with implementation of regulatory requirements and the Project Design Features above. In addition, it is also important to note that the LAFD will continue to allocate its resources based on need. Furthermore, emergency vehicles are equipped with sirens and, as such, are able to navigate around traffic. Therefore, cumulative impacts on emergency response time would be less than significant. Thus, cumulative fire protection impacts associated with the project’s incremental effect and the effects of the other projects would be less than significant.

5. Mitigation Measures

As discussed above, with implementation of Project Design Features and regulatory requirements, potential impacts associated with capability of fire protection services and emergency medical services, response distances, fire flows, firefighting access and safety hazards associated with the member-only fueling station would be less than significant. Nonetheless, the following mitigation measures are proposed to further reduce these less than significant impacts.

a. Construction

Mitigation Measure G.1-1: During construction for the project, the Los Angeles Fire Department shall be notified of the times of day and locations of any lane closures or other road construction.

b. Operation

Mitigation Measure G.1-2: The project shall comply with all applicable State and local Codes and Ordinances regarding fire protection and environmental safety, as well as the General Plan Safety Element and General Plan Framework Element, both of which are elements of the General Plan of the City of Los Angeles.

Mitigation Measure G.1-3: The applicant shall submit an emergency response plan for approval by the decision maker and the Los Angeles Fire Department. The emergency response plans shall include but not be limited to the following: mapping of emergency exits, evacuation
routes for vehicles and pedestrians, location of nearest hospitals, and fire departments.

Mitigation Measure G.1-4: Within the member-only fueling station, additional primary and secondary containment equipment and spill-prevention features shall include overfill protection features, gravity return of undispensed product, flex joints at tanks and islands, and breakaway/impact valves and dispensers.

Mitigation Measure G.1-5: Within the member-only fueling station, a fuel system leak detection monitoring console shall be located within the steel controller enclosure. The leak detection system shall provide constant monitoring and positive shutdown of the flow if a leak is detected within the tank, and/or piping system. The alarm system will be tied to the main anchor retail store warehouse as well as to an independent security company.

Mitigation Measure G.1-6: A spill clean-up kit and absorbent materials shall be provided for small spill containment and clean-up as part of a hazardous waste disposal plan. The kit and its location shall be marked in such a way as to identify when and how it is to be used. This kit shall be checked on a daily basis to ensure that it is complete and ready for use.

Mitigation Measure G.1-7: Within the member-only fueling station, an emergency response plan shall be located inside the controller enclosure and all gasoline facility employees shall be fully trained in all facets of this plan.

Mitigation Measure G.1-8: Upon installation, the fueling system within the member-only fueling station shall be pressure-checked according to the manufacturer's specifications to detect any pressure loss and to isolate and correct new problems before covering the tanks and paving the site.

6. Level of Significance After Mitigation

Implementation of the mitigation measures provided above would further reduce the less than significant project and cumulative impacts associated with fire protection and emergency medical services and environmental safety associated with the member-only fueling station.