IV.E HAZARDS AND HAZARDOUS MATERIALS

1. INTRODUCTION

This section addresses the project’s potential environmental impacts related to hazards and hazardous materials, including analysis of surrounding uses that may be hazardous to the project site. The information contained in this section is derived from the Phase I Environmental Site Assessments (ESA), dated December 2006 and the Phase II Final Site Assessment Report dated November 2006 prepared for the project site by EFI Global, Inc. The purpose of these studies was to identify the environmental conditions on the site, and the presence of any hazardous substances under conditions that indicate an existing release, past release or a material threat of a release into structures, property, groundwater, or into surface drainage on the site. A copy of the Phase I ESA is provided in Appendix IV.E.1A and a copy of the Phase II report is provided in Appendix IV.E.1B.

2. EXISTING CONDITIONS

The project site is located on the southeastern corner of Wilshire Boulevard and La Brea Avenue in the City of Los Angeles. Specifically, the approximately 3.4-acre project site comprises an entire city block and is bound by Wilshire Boulevard to the north, Sycamore Avenue to the east, 8th Street on the south, and La Brea Avenue to the west. Existing development on the site includes a three-story church (including a basement), a commercial strip center, a private alley, and paved parking areas.

a. Phase I Findings

The Phase I ESA included a review of aerial photographs, a review of previous environmental studies, interviews with individuals familiar with the project site, a site reconnaissance, and a regulatory database review. A summary of information obtained from these sources is provided below.

Aerial Photographs

The general type of activity and land use can often be discerned from the type and layout of structures visible in an aerial photograph; however, specific elements of a site operation cannot normally be determined from the photographs. Photographs taken by Fairchild, Laval, Teledyne, and the United States Geographical Service (USGS) from 1928 through 2002 show the details of the project site and the surrounding area.
1928 (Fairchild)

Two commercial buildings existed in the northwest corner of the site and the Lindy Opera House in the northeast corner of the site. An improved access road runs south of the two commercial buildings in an east to west direction. The remainder of the site is divided into east and west portions. Four single-family residences and garages are on the eastern portion of the site and sparse vegetation is on the western portion of the site.

1938 (Laval)

Two additional single-family residences were on the eastern portion of the site. The western portion now contains a commercial structure.

1947 (Fairchild)

Two additional commercial structures were on the western half of the site.

1956 (Fairchild)

The most northern commercial structure on the southwestern portion of the site was replaced by two smaller commercial structures and paved parking areas.

1965 (Fairchild)

The commercial structure in the northwest corner of the site was replaced by the present day commercial structure. The single-family residences on the eastern half of the site were replace by a paved parking lot. The commercial building on the southwest corner of the site was demolished.

1976 (Teledyne)

The configuration of the three commercial structures on the western half of the site was altered.

1989 (USGS)

The commercial building located in the northeast corner of the site was replaced with a paved parking lot. A smaller commercial building that exists today was added south of the improved alley and one large commercial building.

1994 and 2002 (USGS)

The project site was essentially unchanged.
Previous Environmental Studies

An environmental report was previously prepared for the project site. Pertinent information from the reviewed reports is provided below.

Phase I Environmental Site Assessment (Phase I ESA), Metroplaza Shopping Center, 714–780 South La Brea Avenue, Los Angeles, California, prepared by Property Solutions Incorporated (PSI) for Donaldson, Lufkin, and Jenrette, dated September 28, 1999.

- The PSI study area (site) consisted of one parcel of land (approximately 1.09 acres) developed with a single story (partial second story), 14 unit commercial retail building. The PSI site comprises the southwest portion of the project site.

- The historical review provided by PSI indicated that a dry cleaner operated at the site from circa 1986 (at the time the retail center was established) through 1996. Since at least 1945 until the site was converted/reeveloped in 1985 to a retail/commercial center (two buildings), the site was owned and operated by an automobile sales and service dealership (Murphy’s Oldsmobile and Frank Sanders Oldsmobile Dealerships). Additionally, based on an interview with the property manager at the time of the PSI report, several underground storage tanks (USTs) were formerly associated with automobile dealership operations.

- PSI’s review of regulatory records (including those maintained by the Los Angeles City Fire Department–UST and Industrial/Commerce Divisions) indicated that no records associated with the historical USTs were available for review.

- The regulatory database review provided by PSI indicated no recognized environmental conditions in connection with the site.

- PSI considered the operations associated with the former drycleaner and the lack of documentation indicating the status of historical USTs associated with the automobile sales/service dealership operations to represent a recognized environmental condition on the site. Based on the identified concerns, PSI conducted a limited subsurface investigation in conjunction with the Phase I ESA.

Phase II Subsurface Investigation, Metroplaza Shopping Center, 714–780 South La Brea Avenue, Los Angeles, California, prepared by Property Solutions Incorporated (PSI) for Donaldson, Lufkin, and Jenrette, dated September 29, 1999.

- Based on the PSI’s concerns associated with a former drycleaner located in suite 732 (operated from 1985 through 1996) and the lack of documentation indicating the status of historical USTs associated with the automobile sales/service dealership operations, PSI conducted a limited subsurface investigation in conjunction with the Phase I ESA. The USTs were reportedly located in the parking area associated with the site building.

- PSI’s subsurface investigation targeted the following two areas of concern: Area No. 1 - Former Auto Dealership, and Area No. 2 - Former Dry Cleaner.
• As part of the investigation associated with Area #1, PSI had four soil borings advanced in the asphalt paved parking areas of the site. The four soil borings were advanced to a depth of 16 feet below ground surface (bgs). Based on field screening techniques (photoionization detector [PID]), a single sample was collected from each boring at 16 feet bgs. The four soil samples were analyzed for Volatile Fuel Hydrocarbons (VFHs), Extractable Fuel Hydrocarbons (EFHs), Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), and Methyl, Tertiary, Butyl, and Ether (MTBE) using Environmental Protection Agency (EPA) Method 8015/8021B. Reportedly, none of the constituents of concern was identified in the four soil samples at concentrations above the laboratory reporting limit.

• As part of the investigation associated with Area #2, PSI had a total of two soil borings advanced in the asphalt paved parking area; one soil boring was reportedly located north of the tenant space 732 and the second soil boring was reportedly located in the parking lot located south of tenant space 732 and the adjoining tenant space 740. The two soil borings were advanced to a depth of 16 feet bgs. Based on field screening techniques (PID), a single sample was collected from each boring at 8 feet bgs. The two soil samples were analyzed for Volatile Organic Compounds (VOCs) using EPA method 8260. Reportedly, no VOCs were identified in the two soil samples at concentrations above the laboratory-reporting limit.

• Based on the results of the limited subsurface investigation, PSI recommended no further action with regards to the operations associated with former automobile dealership and dry cleaner operations.

It should be noted that no analytical data or site plans depicting the actual soil boring locations were included in the limited subsurface investigation.

Phase I Environmental Site Assessment, Metroplaza Shopping Center, 714–780 South La Brea Avenue, Los Angeles, California, prepared by Western Environmental Engineers Company (WEECO) for Center Bank, dated June 1, 2005.

• The WEECO study area (site) consisted of one parcel of land (approximately 1.09 acres) developed with a single story (partial second story), commercial retail building. The WEECO site comprises the southwest portion of the project site.

• The historical review provided by WEECO indicated that, from 1945 through 1984, the site was occupied by an automobile dealership and service center. In 1985, the dealership structures were redeveloped/converted into the commercial retail center observed during the WEECO site reconnaissance. The records review further indicated that in 1956 two waste oil USTs, (1) 120-gallon and (1) 280-gallon, were installed on the portion of the site associated with the address of 750 South La Brea Avenue (southwest corner of the site). According to interviews conducted with regulatory personnel and on-site personnel, the two USTs were reportedly removed form the site prior to the 1985 conversion.

• The on-site reconnaissance provided by WEECO reportedly revealed no evidence of hazardous material storage or usage, and no evidence of aboveground storage tanks (ASTs). Furthermore, no evidence of concrete scaring, fill pipes, or vents pipes indicating the presence of current or historical USTs was observed.
IV.E Hazards and Hazardous Materials

- WEECO summarized the results the Phase II Subsurface Investigation Report conducted by PSI (review provided by EFI above).

- The regulatory database review provided by WEECO indicated no recognized environmental conditions in connection with the site. Based on a review of historical records, regulatory databases, and the previous subsurface investigation report; WEECO identified no environmental concerns to the site. However, WEECO recommended that an on-site transformer be monitored for leaks as a preventative measure.

Phase I Environmental Site Assessment, 5220 Wilshire Boulevard, Los Angeles, California, prepared by JMK Environmental Solutions, Inc. (JMK) for Wilshire State Bank, dated August 12, 2005.

- The JMK study area consisted of the commercial structures and paved parking areas bound by Wilshire Boulevard to the north, 8th Street to the south, Sycamore Avenue to the east, and South La Brea Avenue to the west. The JMK study area comprises the project site.

- The regulatory database review, historical review, and site reconnaissance provided by JMK indicated no recognized environmental conditions in connection with the site. JMK recommended no further action or subsurface investigation based on the site condition and available records.

Environmental Investigation of the Commercial Properties Located at the Southeast Corner of Wilshire Boulevard and La Brea Avenue, Los Angeles, California, prepared by Meredith and Associates, Inc. (MAI) for WishLab-790 LLC, dated May 16, 2006.

- The MAI study area consisted of the commercial structures and paved parking areas bound by Wilshire Boulevard to the north, 8th Street to the south, Sycamore Avenue to the east, and South La Brea Avenue to the west. The MAI study area comprises the project site.

- The MAI investigation included a methane gas study (City of Los Angeles designation of a Methane Zone), and a subsurface soil and water investigation associated with areas potentially impacted by former auto repair and dry cleaning activities. Additionally, a groundwater assessment was conducted to evaluate the need for potential National Pollutant Discharge Elimination System (NPDES) permitting during proposed construction activities.

- Ten shallow soil test borings, identified as boring locations S-1 through S-10, were advanced on the project site (in the vicinity of the former dry-cleaning and vehicle repair operations) to depths ranging between 20 and 25 feet bgs. Ten soil samples and two grab groundwater samples (collected from borings located north and south of the former dry cleaner-S1 and S6) were collected and analyzed for VOCs and total petroleum hydrocarbons (TPHs) in the gasoline and diesel ranges.

- The results of the subsurface investigation indicated that no concentrations of TPH or VOCs were identified above the laboratory detection level in the 10 soil samples. However, perchloroethylene (PCE), trichloroethylene (TCE), and cis-1,2-Dichloroethylene were detected in the groundwater sample collected southwest of the former drycleaner (S-6) at concentrations of 108 micrograms per liter (μg/L), 35 μg/L, and 9.2 μg/L, respectively. PCE and TCE were detected
in the groundwater sample collected from S-1 at concentrations of 4.6 μg/L and 2.3 μg/L, respectively.

- Based on the results of the subsurface investigation, MAI concluded that PCE was likely present in the soil beneath the former dry cleaning suite.

- The methane gas investigation included the advancement of 14 shallow depth probes (4 to 5 feet bgs) and seven multi-depth probes (depths ranging from 10 to 20 feet bgs). Eight of the probe locations detected methane concentrations ranging from 2 parts per million (ppm) to greater than 1,000 ppm, with the highest concentration detected on the north portion of the project site at 4,500 ppm.

- Based on the results of the methane gas investigation and City of Los Angeles criteria for methane mitigation, MAI concluded new construction at the project site would require methane mitigation measures.

- As part of the NPDES groundwater investigation, two groundwater-monitoring wells were installed on the northern (MW-N) and southern (MW-S) portions of the project site (no groundwater sample was collected from MW-N). One groundwater sample was collected from the down-gradient (MW-S) well and subjected to analysis for NPDES permitting compounds, including: TPH as gasoline, diesel fuel and motor oil, VOCs and ethylene dibromide, methanol, semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), organochlorine pesticides, metals, dioxin, percolate asbestos, as well as conventional water quality parameters. The conventional parameter include hardness, pH, suspended solids, BOD, oil and grease, settleable solids, turbidity, total dissolved solids, chlorides, sulfates, nitrates, sulfides, and boron.

- The analytical data for the groundwater sample indicated no significant concentrations of TPH, VOCs, SVOCs, or pesticides. Elevated levels of the following metals were detected: Beryllium (9 micrograms per liter [ug/L]), Chromium III (161 ug/L), Copper (280 ug/L), Lead (43 ug/L), and Zinc (591 ug/L). The California State Department of Health Services Maximum Contaminant Level for the elevated constituents are 4 ug/L (Beryllium), 50 ug/L (Chromium III), 1,000 ug/L (Copper), 15 ug/L (Lead), and 5,000 ug/L (Zinc). MAI attributed the elevated levels to high settleable and suspended solids identified in the groundwater sample. MAI concluded that the identified concentrations of metals would be expected to drop if the wells were properly developed and settleable and suspended solids were reduced.

- Following the investigations, MAI concluded that additional site assessment (including monitoring well construction) associated with the soil and groundwater in the vicinity of the former drycleaner operations was recommended to further delineate the extent of soil and groundwater impacts.
Interviews

As part of the Phase I ESA, an interview with Mr. Darrin Mathis, Maintenance Manager for uses on the project site since the early 1990s, was done to obtain information on current site operations. Based on discussions with Mr. Mathis, the following information was gathered:

- Mr. Darrin Mathis has been associated with the project site since the early 1990s.

- A dry cleaner historically operated out of Suite 732 of the Metroplaza Shopping Center building. Mr. Mathis had no knowledge of spills or incidents associated with the dry cleaning equipment.

- No USTs are currently located on the project site, to his knowledge. No ASTs are located on the project site.

- No methane mitigation systems or methane wells are located on the project site to his knowledge. However, two methane sensors were located within electrical rooms situated on the north and south ends of the Metroplaza Shopping Center building. Mr. Mathis had no knowledge pertaining to the location of potential methane sensors within the church building.

- No significant quantities of petroleum products or hazardous materials/waste were stored on the project site.

- No hydraulic lifts were historically located within the retail building, to his knowledge.

Interviews with Giann Vital, property owner, as well as Ben Blauner, project site manager, were conducted and the following information was obtained:

- The Metroplaza Shopping Center building was converted in 1985 from the former automobile dealership into the present day retail shopping center.

- The current church structure was constructed in circa 1965 as a bank. Following the occupation of the structure by a bank, the interior improvements were altered to create the observed configuration.

- No active USTs are located on the project site. Neither Mr. Vital nor Mr. Blauner had knowledge pertaining to the status of historical USTs.

Mr. Vital further stated that he is not aware of any pending, threatened, or past

- litigation relevant to hazardous substances or petroleum products in, on, or from the project site;

- administrative proceedings relevant to hazardous substances or petroleum products in, on, or from the project site; or

- notices from any governmental entity regarding violations of environmental laws or liability relating to the presence of hazardous substances or petroleum products in, on, or from the project site.
Site Reconnaissance

A site visit and tour of the project site was completed for the Phase I ESA. For reporting purposes, the church structure located on the northern one-third of the project site and assigned address of 5220 Wilshire Boulevard will be referred to as Wilshire Boulevard, and the structures associated with the Metroplaza Plaza Shopping Center on the southern two-thirds of the project site will be referred to as La Brea Avenue.

Interior Property Observations

Interior Storage Areas

Wilshire Boulevard – Facility maintenance supplies and janitorial supplies were observed in a maintenance room/woodshop and one janitorial room located in the building located at 5220 Wilshire Boulevard (Wilshire Grace Church). Supplies located in the maintenance room included various electrical fixtures, parts, and miscellaneous tools, as well as, 1-gallon and 1-pint containers of paint, paint thinner, cleaners, sealers, and lubricants. Janitorial supplies stored on site included household quantities of cleaners, disinfectant, industrial soap, and 5-gallon containers of cooling water treatment. The observed materials appeared sealed and no evidence of leaks, stains, or spills was observed on the shelves or concrete floors where the substances were stored. According to the Maintenance Manager, routine upkeep and repairs are performed by on-site maintenance staff.

La Brea Avenue – Household quantities of janitorial supplies were observed within each of the suites and included 1-gallon to 1-pint containers of window cleaner, disinfectant, and industrial soap. The observed materials appeared to be sealed and properly stored with no evidence of leaks, stains, or spills.

Interior Waste Disposal Areas

With the exception of trashcans containing cardboard, paper, and food containers, no interior waste disposal areas were reported or observed on the project site.

Interior Subsurface Structures

Wilshire Boulevard – Floor drains were observed in the basement of the building located at 5220 Wilshire Boulevard. The floor drains were observed adjacent to a concrete floor mounted heating, ventilating, and air conditioning unit (HVAC) located adjacent to the janitorial room and an associated cooling machine (controls the pressure for each room) situated on the concrete floor of the maintenance room. The floor drains appeared to be used for overflow and pooled condensation water. The concrete floor in the vicinity of the drains located adjacent to the HVAC unit appeared wet, indicating that
condensation water pooled on the concrete flooring when the HVAC system was in use. No staining was observed on the concrete flooring surrounding the drains. The floor drains reportedly discharges into the sanitary sewer system. The building had two hydraulic passenger elevators. Based on a review of historical fire insurance maps, the hydraulic equipment for both of the elevators was located in an equipment room in the basement since the early 1960s. At the time of EFI’s on-site reconnaissance, ponded liquid (likely hydraulic oil) was observed adjacent to the elevator equipment. However, no staining or evidence of etching was observed in the elevator equipment room. EFI observed a maintenance log in the elevator equipment room that indicated monthly routine maintenance calls. No floor drains or cracks in the concrete were located within the elevator equipment room. This exception is not expected to alter the conclusions described herein.

La Brea Avenue – Floor drains were observed in the concrete and clay tile flooring located in the kitchen areas of Flame Chicken and Philly Steak and Pizza Hut. No staining or evidence of etching was observed on the concrete and clay tile flooring surrounding the drains. EFI was not granted access to the interior of the Suite 740-La Brea Restaurant. The presence of subsurface structures located within the La Brea Restaurant is unknown.

Exterior Property Observations

Exterior Storage Areas

No exterior storage areas were reported or observed on the project site.

Exterior Disposal Areas

Solid waste and recycling dumpsters were located in concrete block enclosures situated at the north and south ends of the Metroplaza Shopping Center. Solid waste disposal services are provided by Nor Cal Waste. No staining or signs of improper disposal were observed on or around the dumpsters.

Two 55-gallon drums of waste cooking oil were observed in the enclosed dumpster areas located on the north end of the Metroplaza Shopping Center. Baker Commodities collects the waste cooking oil on a bi-monthly schedule. No additional exterior disposal areas were observed on the project site.

Subsurface Structures

Two groundwater-monitoring wells were observed on the project site (appeared to be associated with previous subsurface investigations). One groundwater-monitoring well (MW-N) was observed in the asphalt paved parking area situated on the northeast corner of the site. The second groundwater-monitoring well (MW-S) was observed in the asphalt paved parking area situated on the
southwest corner of the project site. No staining or evidence of spills was observed on the asphalt paving surrounding the groundwater monitoring wells.

No additional subsurface structures were reported or observed on the project site.

Aboveground and Underground Storage Tanks

No aboveground storage tanks were observed or reported on the project site. Additionally, no aboveground storage tanks were identified during the review of environmental regulatory agency database listings.

No evidence of existing underground storage tanks (USTs), e.g., fill pipes, vent pipes, dispensers, emergency generators, or fuel oil-powered heating systems, was reported or observed at the site. Additionally, no underground storage tanks were identified during the review of environmental regulatory agency database listings.

A Request for Fire Prevention Records was submitted to the Los Angeles Fire Department Bureau of Fire Prevention and Public Safety (LAFD) regarding any information they may have pertaining to the project site, including any UST information. The LAFD is the agency that maintains UST records for facilities located in the City of Los Angeles. The LAFD had no records pertaining to the site. However, based on a review of a previous report, two USTs were historically located on the portion of the project site that was historically assigned the address of 750 La Brea Avenue (south half of the former dealership). Based on the lack of closure documentation, the status of the two USTs is unknown. Owner provided or agency provided records were not identified, which indicate that a soil and/or groundwater investigation was conducted as part of the UST abandonment.

Hazardous Waste

No evidence of hazardous waste storage, treatment, generation, or disposal was observed or reported at the project site.

Surface Water

No surface water areas were observed on the project site.

Database Review

A review of available federal and state databases, as well as older Phase 1 ESA reports prepared by other firms, was conducted by EFI Global, Inc. during the preparation of the Phase I ESA to identify properties
with recognized environmental conditions within the area of the project site. The radius of investigation for federal and state agency lists was selected in accordance with the American Society of Testing Materials (ASTM) Standards for Environmental Site Assessments. The following federal and state lists were reviewed:

- National Priorities List (NPL): The list of NPL, or United States Environmental Protection Agency (US EPA) Superfund sites, considered to pose an immediate threat to human health and the environment. The EPA Proposed NPL database was also reviewed.

- Comprehensive Environmental Response Compensation and Liability Information Systems List (CERCLIS): CERCLIS is the Superfund database list that contains information on all aspects of hazardous waste sites until listed on the NPL. The CERCLIS No Further Remedial Action Planned (NFRAP) database was also reviewed.

- Emergency Response Notification System (ERNS): ERNS tracks the initial notification and response to all reported petroleum and hazardous materials spills.

- Resource Conservation and Recovery Information System (RCRIS): RCRIS includes information on sites which generate, transport, store, treat, and/or dispose of hazardous wastes defined by the Resource Conservation and Recovery Act (RCRA). The RCRA Tracks all events and activities related to facilities that generate, transport and treat, store or dispose of hazardous waste. Within the RCRIS, the Resource Conservation and Recovery Information System Corrective Action Report (CORRACTS), Treatment Storage and Disposal (TSD), Large Quantity Generator (LQG), and Small Quantity Generator (SQG) databases were reviewed.

- Annual Workplan (AWP): Known Hazardous Waste Sites, California Department of Toxic Substances Control’s (DTSC’s) Annual Workplan, formerly the Bond Expenditure Plan (BEP), identifies known hazardous substance sites targeted for cleanup.

- CAL-SITES: The CAL-SITES list (previously known as the Abandoned Site Program Information System [ASPIS]) contains information on potential hazardous waste sites that have been identified by the Historical Abandoned Site Survey Program.

- CORTESE (State of California Office of Planning and Research, Government Code Section 65962.5): The database identifies public drinking water wells with detectable levels of contamination, hazardous substance sites selected for remedial action, sites with known toxic material identified through the abandoned site assessment program, sites with underground storage tanks (USTs) having a reportable release and all solid waste disposal facilities from which there are known contamination migrations.

- State Landfills/Solid Waste Information System (SWIS): The California Waste Management Board maintains an inventory of active, inactive, and closed solid waste disposal and transfer facilities.

- Leaking Underground Storage Tanks (LUST): California RWQCB, Underground Storage Tank Leak List, a list of known leaking underground storage tanks.
IV.E Hazards and Hazardous Materials

- Permitted Underground Storage Tanks—State Water Quality Board (UST): The Cortese Bill (AB 2013) enacted in 1983, required registration of all USTs with the State Water Quality Board by July 1, 1984. About 176,000 tanks and surface impounds were registered between 1984 and 1987. An Amendment (AB 1413) was passed in 1987, effectively removing the State Water Quality Board from the registration process starting January 1, 1988. The data reflects the information collected by the state between 1974 and 1987. Home and farm heating fuel tanks with the capacities of 1,110 gallons or less and structures such as “sumps, separators, storm drains, catch basins, oil field gathering lines, refinery pipelines, lagoons, evaporation ponds, well cellars, separation sumps, lined and unlined pits, sumps and lagoons” except those defined as UST under HSWA may be regulated to protect water quality under the Porter-Cologne Water Quality Control Act.

- The Facility Inventory Database (CA FID UST) contains active and inactive underground storage tank locations. The source is the State Water Resource Control Board.

- California Hazardous Material Incident Report System (CHMIRS): This database contains information on reported hazardous material incidents, i.e., accidental releases or spills. The source is the California Office of Emergency Services.

- WMUDS/Solid Waste Assessment Test (SWAT): The State Water Resource Control Board ranks all solid waste disposal sites throughout the state on the basis of the potential threat they may pose to water quality. Sites are tested to see whether there is hazardous waste leakage from the landfill.

On-Site Listing

The project site was identified on the RCRIS-SQG databases as a result of waste generation associated with AA Custom Cleaners (732 South La Brea). No RCRA violations or spills, leaks, or incidents were reported for the historical tenant. However, in May 2006, a previous consultant evaluated the impacts of the former dry cleaner site with the advancement of soil borings (soil samples and groundwater grab samples) and the installation of two permanent groundwater-monitoring wells. The results of the subsurface investigation indicated that PCE, TCE, and cis-1,2-Dichloroethylene were detected within the groundwater sample collected southwest of the former drycleaner at concentrations of 108 micrograms per liter (μg/L), 35 μg/L, and 9.2 μg/L, respectively. Based on the results of the subsurface investigation, the preparer of the report concluded that PCE was likely present in the soil beneath the former dry cleaning suite. Based on the lack of data defining the extents of the impacts from the former dry cleaner operations; the identified impacts to groundwater beneath the project site represent a recognized environmental condition relative to the project site.

The project site was not identified on the Registered UST database. However, based on a review of permits included in a previous report, two waste oil USTs (120-gallon and 280-gallon) were historically associated with the project site. Based on a review of the permit, the USTs were installed on the portion of the site historically assigned the address of 750 La Brea Avenue (south half of the former dealership).
Based on the lack of closure documentation, the status of the two USTs is unknown. Additionally, owner provided or agency provided records were not provided to indicate that a soil and/or groundwater investigation was conducted as part of the UST abandonment. The historical waste oil USTs represents an environmental concern to the project site at this time.

Adjacent and Other Site Listing

The project site is bordered on the north, south, east, and west by improved roads: Wilshire Boulevard, 8th Street, South Sycamore Avenue, and La Brea Avenue, respectively. Commercial development is located further to the north, west, southwest, and northeast. Single and multiple family residences are located further to the east/southeast. Listed below are neighboring sites that are of concern. Observations were restricted to those areas readily observable from the project site and the public right-of-way within an approximately 0.25-mile radius of the project site.

- Sycamore Tailor/Dry Cleaner at 5225 Wilshire Boulevard, 75 feet north and hydraulically upgradient of the project site.
- 1.99 Cleaners, also known as Budget Cleaners, at 5170 Wilshire Boulevard, 100 feet east and hydraulically upgradient of the project site.
- Celebrity Car Leasing (former) at 816 La Brea Avenue, hydraulically downgradient of the project site.
- Lou Ehlers Cadillac at 5151 Wilshire Boulevard, 200 feet east-northeast and hydraulically upgradient of the project site.

Sycamore Tailor/Dry Cleaner was not identified in the EDR database report. Budget Cleaners was identified in the EDR database report as a RCRIS facility due to the generation of waste halogenated solvents. No violations were reported for the facility. Based on the lack of reported violations, this facility does not represent a recognized environmental condition relative to the project site.

Celebrity Car Leasing was identified as a LUST facility resulting in its listing on the CORTESE database. In 1989, petroleum hydrocarbon impacted groundwater was identified during the UST closure activities. The facility was granted closure by the Regional Water Quality Control Board in 1997. Based on the status of the LUST incident and hydraulic location from the project site, this listing does not represent a recognized environmental condition relative to the project site.

Lou Ehlers Cadillac was identified as a LUST facility resulting in its listing on the CORTESE database. According to the EDR report, in 1988 one 1,000-gallon waste oil UST, two 10,000-gallon gasoline USTs, and three 500-gallon gasoline USTs were closed in place. At the time of UST closure, petroleum hydrocarbon impacted groundwater was identified at the facility. Following soil and groundwater
remediation activities, in 1996, the RWQCB granted LUST case close to the facility. Due to the status of the LUST case, this listing does not represent a recognized environmental condition relative to the project site.

Radon

Radon is a colorless, tasteless radioactive gas with a very short half-life of 3.8 days. The health risk potential of radon is associated with its rate of accumulation within confined areas, particularly confined areas near or in the ground, such as basements, where vapors can readily transfer to indoor air from the ground through foundation cracks or other pathways. Large, adequately ventilated rooms generally present limited risk for radon exposure. The United States Environmental Protection Agency (EPA) has established a recommended action level for radon of 4.0 picocuries per liter of air (pCi/L).

According to regional radon information obtained from the EPA, the project site is located within EPA-designated Zone 2 for radon gas. Average radon concentrations within Zone 2 are reported to be greater than 2 pCi/L and less than 4 pCi/L. Thirty-four households were sampled within the site’s zip code. The average concentration for the first floor living area was 0.711 pCi/L and the average concentration for the basement living area was 0.933 pCi/L. Since Zone 2 areas are typically below the recommended EPA action level, the radon exposure risk at the project site is considered low.

Oil Wells

No oil or gas wells were identified on the project site or adjacent properties in the USGS topographic map reviewed. Additionally, no manufactured coal gas sites were identified on the project site or vicinity in the EDR report. A review of the California Division of Oil, Gas, and Geothermal Resources (CDOGGR) Wildcat Map W1-5, Map detail 118, revealed the project site is located adjacent to the boundary of the Salt Lake Oil Field. Based on further review of the area detail, a cluster of plugged and abandoned oil wells were identified approximately 2,000 feet northwest of the site and two plugged and abandoned dry holes were identified approximately 1,000 feet east of the project site.

Methane Gas

The property information section of a parcel description maintained on the Los Angeles County Assessor webpage (www.lacountyassessor.com) indicates that the project site is located in a “High Potential and Potential Methane Zone.” According to the City website, the site is located in an area that has been identified as a potential methane hazard site due to its proximity to methane gas sources such as landfills, oil wells, oil fields, and underground gas storage facilities. The locations of these methane gas sources are based on data from the CDOGGR and the City of Los Angeles Department of Environmental Affairs.
Development regulations relate to the measures necessary to mitigate methane gas hazards based on the property's proximity to the methane gas source, which is categorized by two zones: the Methane Zone (having more restrictive mitigation requirements) and the Methane Buffer Zone (having less restrictive mitigation requirements). A review of the City of Los Angeles Methane and Methane Buffer Zones Map indicates that the site is located within an area designated as a Methane Zone and adjacent to a Methane Buffer Zone as shown on Figure IV.E-1, Methane Zone Boundary. No methane mitigation systems were observed on the project site.

A methane gas investigation was conducted on the project site in 2006. The investigation included the advancement of 14 shallow depth probes (4 to 5 feet bgs) and seven multi-depth probes (depths ranging from 10 to 20 feet bgs). Eight of the probe locations detected methane concentrations ranging from 2 parts per million (ppm) to greater than 1,000 ppm. The highest concentration was detected on the north portion of the project site with a concentration of 4,500 ppm. Due to the documented elevated methane gas concentrations, any additions, alterations, repairs, changes of use or occupancy to the existing buildings should comply with the City of Los Angeles methane mitigation requirements.

b. Phase II Findings

Due to possible soil contamination underneath the site of the former dry cleaner and the unknown status of two USTs historically associated with the site, addition soil and groundwater analysis was conducted on the project site. The analysis involved soil boring and the installation of temporary groundwater wells. In all, 12 soil borings were advanced and six wells were installed. The wells were installed in selected soil boring locations. In addition, an existing groundwater monitoring well located in the northeast corner of the project site was utilized as well. The location of the boring and ground water wells is illustrated in Figure IV.E-2, Soil Boring and Groundwater Sample Locations.

Analytical Procedures

Soil

Soil samples were analyzed for some or all of the following constituents using the listed methods, with the exception of those placed on hold at the laboratory:

- Total petroleum hydrocarbons (TPH) as diesel (TPHd), oil (TPHo), and gasoline (TPHg), using EPA Method 8015M;
- Polycyclic aromatic hydrocarbons compounds (PAHs) using EPA Method 8310;
- Volatile organic compounds (VOCs) using EPA Method 8260B;
IV.E Hazards and Hazardous Materials

- Polychlorinated biphenyls (PCBs) using EPA method 8082; and,
- California Administrative Manual (CAM) 17 metals using EPA 6000/7000 series methods.

Groundwater

All collected groundwater samples were analyzed for some or all of the following constituents using the following methods:

- TPHd, TPHo, and TPHg using EPA Method 8015M;
- PAHs using EPA Method 8310;
- VOCs using EPA Method 8260B;
- PCBs using EPA method 8082; and,
- CAM 17 metals using EPA 6000/7000 series methods.

Regulatory Review

The San Francisco Bay Region RWQCB (SFRWQCB) prepared the Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater (fourth edition, Interim Final, dated February 2005). The SFRWQCB established Environmental Screening Levels (ESL) for chemicals commonly found in soil and groundwater at sites where releases of hazardous chemicals have occurred. The ESLs replaced the previously utilized Risk Based Screening Levels (RBSLs). The ESLs are considered conservative levels and are comparable to the Environmental Protection Agency (EPA) Region 9, Preliminary Remedial Goals (PRGs), and the California Environmental Protection Agency (Cal/EPA), California Human Health Screening Levels (CHHSLs). Under most circumstances, and within the limitations described, the presence of a chemical in soil, soil gas, or groundwater at concentrations below the corresponding ESL can be assumed not to pose a significant, long-term (chronic) threat to human health and the environment. The SFRWQCB ESLs were developed as an alternative to preparing a formal, detailed risk assessment. The ESLs have not been subject to the rulemaking process; rather they are intended to be used as a screening tool to help evaluate the need for additional assessment.
FIGURE IV.E-1
Methane Zone Boundary

Legend:
- Methane Zone
- Methane Buffer Zone
- Council District Boundary

Project Location

NOT TO SCALE

SOURCE: Impact Sciences, Inc. – February 2007
The ESLs were established for shallow (less than 10 feet bgs) and deep soils (greater than 10 feet bgs) where groundwater was a source of drinking water and for the same soils in areas where groundwater was not a current or potential source of drinking water. Additionally, the ESLs were further broken down into Residential Land use levels, Commercial/Industrial Land use levels and Groundwater levels. The groundwater ESLs are the same regardless of soil depth. The ESLs utilized to assess soil and groundwater conditions during this assessment were the residential ESLs where groundwater is a current or potential source of drinking water (the most conservative approach).

Sampling Results

Soil

VOCs, PAHs, and PCBs

Concentrations of Polychlorinated biphenyls (PCBs) were not reported in excess of the laboratory method reporting limits (MRLs) in any of the soil samples submitted for analysis. Reported concentrations of Volatile Organic Compounds (VOCs) were reported at levels less than their respective Environmental Screening Levels (ESLs) and/or Preliminary Remedial Goals (PRGs), with the exception of soil sample B-4-7. Soil sample B-4-7 was collected at a depth of 7 feet bgs and contained reported concentrations of Polycyclic Aromatic Hydrocarbons compounds (PAHs) greater than the respective ESLs. However, PAHs were not detected at concentrations greater than the laboratory MRL in soil sample B-4-1.

TPH

Concentrations of diesel (190 mg/kg) and oil (500 mg/kg) range petroleum hydrocarbons greater than their respective ESLs were detected in soil sample B-11-7. However, concentrations of TPHd (non-detect) and TPHo (21 mg/kg) reported for the soil sample collected below B-11-7 (soil sample B-11-12) were below their respective ESLs. No PRG or CHHSL has been prepared for diesel, oil, or gasoline range petroleum hydrocarbons.

Metals

Cobalt concentrations exceeded the ESL of 10 mg/kg in soil samples B-2-10 (13.0 mg/kg), B-3-20.5 (12.5 mg/kg), B-4-15 (11.3 mg/kg), B-10-4 (17.1 mg/kg), B-10-20 (11.2 mg/kg), B-11-7 (16.0 mg/kg), B-12-15 (14.9 mg/kg), B-12-20 (11.3 mg/kg), and B-13-20 (11.8 mg/kg). The ESL for cobalt is the same for residential and commercial/industrial land use, regardless of soil depth. The PRG for cobalt is 900 mg/Kg for residential soil. The CHHSL for cobalt is 660 mg/Kg for residential soil.
According to the document *Background Concentrations of Trace and Major Elements in California Soils*, prepared by the Kearney Foundation of Soil Science, Division of Agriculture and Natural Resources, University of California, and dated 1996, background levels of cobalt ranged from 2.7 mg/Kg to 46.9 mg/kg (mean of 14.9 mg/kg). Please note that the study generated background concentration results by obtaining soil samples from historically agricultural areas, distant from known point sources of metals and from depths of less than 50 centimeters bgs.

According to the *Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory*, prepared by the Environment, Health and Safety Division of the Laboratory for DTSC, dated June 2002, the background level of cobalt for the region is 22 mg/kg for the 95th percentile. In comparison, the highest detected concentration in a soil sample collected on site was 17.1 mg/kg.

Reported concentrations of cobalt in soil samples B-2-10, B-3-20.5, B-4-15, B-10-20, and B-12-20 are less than the average background concentration of 14.9 mg/Kg identified in the Kearney report and of the 95th percentile concentration of 22 mg/kg in the Lawrence Berkley report. The concentrations of cobalt reported in soil samples B-10-4, B-11-7, and B-12-15 were greater than background average reported in the Kearney report, but less than the 95th percentile average reported in the Lawrence Berkley report. The presence of cobalt concentrations may be attributed to local background levels and does not seem to be indicative of substantial impacts from former operations at the site. Additionally, the concentrations of cobalt detected in soil samples collected from the site are well below the PRG and CHHSL for residential land use.

Groundwater

VOCs, PAHs, and PCBs

Concentrations of PCBs were not reported in excess of the laboratory MRLs in any of the groundwater samples submitted for analysis. A single PAH constituent, acenaphthylene, was detected at a concentration of 7.7 μg/L, less than the respective ESL of 30 μg/L.

Concentrations of PCE and TCE at levels greater than their respective ESLs of 5.0 μg/L were detected in groundwater samples obtained from soil borings B-1 (29 μg/L and 5.5 μg/L, PCE and TCE, respectively), B-6 (72 μg/L and 5.9 μg/L), and B-12 (500 μg/L and 29 μg/L). Concentrations of the cis-1,2-Dichloroethene were detected in excess of the ESL (6.0 μg/L) in groundwater samples B-1 (6.2 μg/L) and B-12 (18 μg/L). Temporary groundwater wells B-12 and B-6 was installed on the portion of the site assumed to be downgradient of the former drycleaner and adjacent to the site property boundary. Concentrations of PCE, TCE, and cis-1,2-Dichloroethene in excess of their respective ESLs may be migrating off site.
Groundwater sample MW-N contained a concentration of TCE (7.5 \mu g/L) greater than the ESL. Groundwater monitoring well MW-N was installed in the northeast corner of the site during a previous subsurface investigation at the site by M&A. This concentration may indicate that an off-site source is contributing to VOC impacts observed beneath the site.

TPH

Concentrations of TPHd and TPHo greater than their respective ESLs (100 \mu g/L) were detected in the groundwater samples collected from temporary well locations B-1, B-6, B-11, B-12, and MW-N. Temporary well locations B-1, B-6, and B-12 were located in the assumed downgradient direction of the former drycleaner and potential automotive service operation areas. However, groundwater monitoring well MW-N is located at the northeastern corner of the site, in the assumed upgradient direction. The detection of TPHd and TPHo concentrations in excess of their respective ESLs would suggest an off-site source may be contributing to the TPH concentrations detected within groundwater beneath the site.

Dissolved Metals

Dissolved concentrations of barium, chromium, copper, vanadium, and zinc were detected in excess of their respective ESLs in all the groundwater samples collected from the soil boring locations. Dissolved barium was detected at concentrations in excess of the ESL (100 \mu g/L) in groundwater samples B-1 (540 \mu g/L), B-6 (720 \mu g/L), B-11 (1,300 \mu g/L), and B-12 (430 \mu g/L). Dissolved chromium was detected in excess of the ESL (50 \mu g/L) in groundwater samples B-1 (100 \mu g/L), B-6 (120 \mu g/L), B-11 (320 \mu g/L), and B-12 (120 \mu g/L). Dissolved copper was detected in excess of the ESL (3.1 \mu g/L) in groundwater samples B-1 (57 \mu g/L), B-6 (93 \mu g/L), B-11 (250 \mu g/L), and B-12 (65 \mu g/L). Dissolved vanadium was detected in excess of the ESL (15 \mu g/L) in groundwater samples B-1 (180 \mu g/L), B-6 (260 \mu g/L), B-11 (530 \mu g/L), and B-12 (180 \mu g/L). Dissolved zinc was detected in excess of the ESL (81 \mu g/L) in groundwater samples B-1 (170 \mu g/L), B-6 (220 \mu g/L), B-11 (650 \mu g/L), and B-12 (160 \mu g/L).

Dissolved nickel was detected at concentrations in excess of the ESL (8.2 mg/L) in groundwater samples B-6 (96 \mu g/L), B-11 (280 \mu g/L), and B-12 (92 \mu g/L). Single detections of dissolved concentrations of cadmium, cobalt, and lead were detected in excess of their respective ESLs (1.1 \mu g/L, 1.0 \mu g/L, and 2.5 \mu g/L, respectively) in the groundwater samples B-11 (cadmium and cobalt) and B-6 (lead).

Concentrations of dissolved metals barium (130 \mu g/L), lead (6.2 \mu g/L), and vanadium (64 \mu g/L) were detected in excess of their respective ESLs from upgradient permanent groundwater monitoring well MW-N. Additionally, a single detection of mercury (0.026 \mu g/L) in excess of the ESL (0.012 \mu g/L) was detected in the sample collected from MW-N.
c. Emergency Response Plan

The City of Los Angeles Emergency Operations Organization coordinates among emergency service organizations and government agencies to manage the critical resources necessary in the time of emergency. The Emergency Operations Organization is made up of many operational divisions. The Public Works Division and the Fire Suppression and Rescue Division are responsible for preventing and responding to emergencies involving hazardous materials Citywide.\(^1\) Individual emergency response and evacuation plans are required by state law for businesses that use specified hazardous materials or involve the threat of a potential release of a hazardous material.\(^2\)

3. REGULATORY FRAMEWORK

a. Federal Regulations

Applicable federal regulations include the U.S. EPA National Emissions Standards for Hazardous Air Pollutants (NESHAP), which regulate the use, removal and disposal of asbestos-containing building material (ACBM) and are implemented by the South Coast Air Quality Management District (SCAQMD) and the Occupational Safety and Health Act (OSHA), which sets standards for safe exposure limits of chemicals to which construction workers are exposed. OSHA guidelines require that specific health and safety plans be implemented during construction for given chemical exposure risks. These guidelines are relevant to the proposed project, because OSHA regulates methane gas and lead exposure.

Because remediation of contaminated soils may be necessary to mitigate hazards impacts for this project, the Resource Conservation and Recovery Act (RCRA) is pertinent. RCRA was established by the US EPA and is implemented by the California Hazardous Waste Control Law (HWCL). RCRA sets standards for hazardous waste treatment, storage, disposal, and remediation of contaminated soils, and involves the treatment and disposal of hazardous materials. The US EPA sets preliminary remediation goals for soil contaminants, and these were used to assess the level of soil contamination on site.

b. State Regulations

DOGGR enforces regulations regarding the permitting, establishment, completion, and abandonment/reabandonment of gas and oil wells. If oil or gas wells were found on the project site, proper abandonment would be required by DOGGR.

The California State Hazardous Waste Control Law (HWCL) establishes regulations for hazardous waste, and Cal/EPa, Department of Toxic Substances Control (DTSC) administers the state hazardous waste program. HWCL applies to hazardous waste generated from soil remediation and hence, is applicable to the proposed project.

Cal/OSHA regulates lead exposure during construction activities as well as airborne contaminants such as lead, asbestos, and soil gases. Employers must implement an Injury and Illness Prevention Program (IIPP), which is a safety program to protect workers from workplace hazards, such as those involved in the demolition/renovation of existing buildings and construction of the proposed project.

The SCAQMD regulates emissions of asbestos during demolition and renovation activities through specific removal, handling, and clean-up procedures (Rule 1403, Asbestos Emissions from Renovation/Demolition Activities).

c. Local Regulations

Chapter IX, Article 1, Division 71, Section 91.7103 of the Los Angeles Municipal Code lays out the Los Angeles Methane Seepage Regulations for buildings and paved areas located in either a Methane Zone or Methane Buffer Zone.

The Los Angeles Fire Department regulates hazardous materials for the City of Los Angeles by issuing permits for hazardous materials handling and administering sections of the Los Angeles City Fire Code applicable to hazardous materials.

4. ENVIRONMENTAL IMPACT ANALYSIS

a. Significance Criteria

As discussed in the L.A. CEQA Thresholds Guide, a project would normally have a significant impact on the environment if it would "involve the use, generation, disposal, transport or management of potentially hazardous or explosive substances (including, but not limited to, oil, pesticides, chemicals or radiation) in sufficient quantities to cause a potential hazard, or if the project would require a new or revised risk management plan, emergency response or emergency evacuation plan."

Risk of Upset/Emergency Preparedness

The determination of significance for impacts associated with risk of upset and emergency preparedness shall be made on a case-by-case basis, considering the following factors:

3 Ibid., H.1-2.
• The regulatory framework;
• The probable frequency and severity of consequences to people or property as a result of a potential accidental release or explosion of a hazardous substance;
• The degree to which the project may require a new, or interfere with an existing, emergency response or evacuation plan and the severity of the consequences; and
• The degree to which project design will reduce the frequency or severity of a potential accidental release or explosion of a hazardous substance.

Human Health Hazards

Impacts would also be considered significant to human health if the project would create a health hazard by introducing a hazard or disturbing, removing or disposing of a hazard found on site or locate people adjacent to a health hazard. The determination of significance of hazardous material impacts on human health is decided on a case-by-case basis and considers the following factors:

• The regulatory framework for the health hazard;
• The probable frequency and severity of consequences to people from exposure to the health hazard; and
• The degree to which project design would reduce the frequency of exposure or severity of consequences of exposure to the health hazard.

Based on these factors, the project would have a significant impact if it would expose people or structures to substantial research resulting from the release of a hazardous material, or from exposure to a health hazard, in excess of regulatory standards.

b. Project Impacts

Construction Impacts

Based on the Phase II report prepared by EFI Global, Inc., potential environmental impacts related to hazards from historical use of the site and the disturbance of potentially contaminated structures, soils and groundwater during construction are analyzed below.

5 EFI Global, Inc. *Phase II Final Site Assessment Report: Wilshire Property 5220 Wilshire Boulevard and 714-780 South La Brea Avenue, Los Angeles, California 90036. 2006.*
Contaminated Soil and Groundwater

Reported laboratory analytical results for selected soil and/or groundwater samples collected from the project site indicated the following constituents at concentrations greater than the laboratory method detection limit (MDL): TPHd, TPHo, VOCs, PAHs, and select CAM 17 Metals. As a result, the consequences to people from exposure to some or all of these constituents during either construction or operation of the proposed project are potentially significant.

The identified impacts to soil and/or groundwater beneath the project site would be addressed under a site-specific independent removal action. An assessment of the potential risk to human health and the environment resulting from the identified impacts to soil and groundwater at the project site and the proposed removal action would be presented within a draft Removal Action Workplan (RAW). The RAW would provide proposed remediation goals for each constituent of potential concern and would be submitted to the LARWQCB for review and comment prior to implementation.

Residual soil and groundwater, which may require special handling and were not addressed during the proposed independent removal action, would be addressed under a Risk Management Plan (RMP). The RMP will be implemented during construction and would present site-specific health and safety protocols and soil/groundwater handling procedures.

Mitigation measures MM-HAZ-1 through MM-HAZ-5, which require the implementation of a RAW and RMP, would reduce the risk of exposure to people during either construction or operation of the proposed project to a less than significant level.

Asbestos and Lead-Based Paint

Structures constructed or remodeled between 1930 and 1981, such as the existing church and commercial strip center, have the potential to contain ACBM. In addition, the two structures were constructed prior to the ban on lead-containing paints in 1979. Construction activities, especially demolition of existing structures on the project site, would result in the release of the ACM fibers and lead-based paint dust. The presence of these materials represents a potentially significant health hazard. Mitigation measures MM-HAZ-6 and MM-HAZ-7 would remove and properly dispose of ACBM and lead-based paint and would reduce this impact to less than significant.

Emergency Response or Evacuation Plan

Construction of the project may result in temporary partial obstruction to adjacent roadways. The project would be required to comply with all applicable City codes and regulations pertaining to emergency
response and evacuation plans maintained by the police and fire departments, as well as fire protection and security. The project applicant would comply with applicable Fire Department, Police Department, Department of Public Works (DPW), and Department of Building and Safety regulations relating to access. As a result, impacts with regard to emergency access would be less than significant.

Operational Impacts

Accidental Release

Implementation of the proposed project would not involve the use of hazardous substances with the potential for accidental release or explosion. The only known hazardous substances associated with project operations would be chemical cleaners, landscaping related chemicals, and other common household hazardous substances. The quantities of these materials would be limited to those typically utilized in households and retail settings. The potential for accidental release and/or explosion of these substances is low, and no aspects of the project design could result in the accidental release or explosion of a hazardous substance; therefore, no potentially significant hazardous substance impacts related to the project design would occur.

A number of surrounding sites are listed in federal and state environmental databases, some with known historical leaks or hazardous conditions. However, all surrounding listed sites have been analyzed in the Phase I ESA relative to the proposed project and deemed insignificant risks to the project site due to the lack of reported violations, the remediation status, and hydraulic location of the sites. Therefore, though some sites in the vicinity of the project are listed as hazardous sites, the probable frequency and severity of consequences to the proposed project site from these sites is less than significant. Surrounding uses do not have the potential to result in significant accidental release and/or health hazard impacts.

Emergency Response or Evacuation Plan

Development of the proposed project would be required to comply with all applicable Community and City codes and regulations pertaining to emergency response and evacuation plans maintained by the police and fire department. The project would redevelop a site that is currently developed with urban uses. As such, emergency and evacuation plans would remain similar to the current existing plans. As such, the impact of the proposed project on emergency response and evacuation plans would be less than significant.

6 EFI Global, Inc. Phase I Environmental Site Assessment Report: Wilshire Property 5220 Wilshire Boulevard and 714-780 South La Brea Avenue, Los Angeles, California 90036. 2006.
Methane Gas

The project site is within a City Methane Zone, as shown on Figure IV.E-2, associated with the Downtown Los Angeles oil field. Since the project site is located within a City defined Methane Zone, the impact of methane to the project site is considered potentially significant, and mitigation measures are required, according to Section 91.7104.2 of the Municipal Code.

Methane was detected at the project site with concentrations ranging from 2 ppm to greater than 1,000 ppm, with the highest concentration on the north portion of the site at 4,500 ppm. This corresponds to Design Level I through Level 3 under the City methane seepage regulations. **Table IV.E-1, Building Methane Mitigation Regulations**, describes each of the five Design Levels under the City methane seepage regulations. Given the site’s location in a City Methane Zone, the potential impact of methane is considered significant. Mitigation measures, as required by the City of Los Angeles, would decrease these impacts to less than significant levels.

The methane mitigation system requirements shown in **Table IV.E-1** are based on appropriate Site Design Level. Site Design Level is determined by the Design Methane Concentration, the highest concentration of methane gas, and the Design Methane Pressure, the highest pressure of methane gas, as determined by site testing. **Table IV.E-1** specifies the minimum methane mitigation systems, such as, the passive, active, and miscellaneous systems, depending on the concentration and pressure of the methane present at the site. Mitigation requirements under the three systems included in **Table IV.E-1** are defined below:7

- **Alarm System**: a group of interacting elements consisting of components and circuits arranged to monitor and annunciate the status of gas concentration levels or supervisory signal-initiating devices and to initiate the appropriate response to those signals;

- **Cable or Conduit Seal Fitting**: an approved fitting provided in a cable or conduit system to prevent the passage of gases, vapors or flames through electrical cable or conduit;

- **De-watering System**: a permanent water removal system, consisting of perforated pipes, gravel, sump pumps and pits, designed to permanently maintain the ground water level 1 foot below the sub-slab vent system;

- **Gas Detection System**: one or more electrical devices that measure the methane gas concentration and communicate the information to the occupants, building management, central station or alarm company with audible or visual signals;

7 Ibid., Section 91.7102.
Table IV.E-1
Building Methane Mitigation Regulations

<table>
<thead>
<tr>
<th>Site Design Level</th>
<th>Level I</th>
<th>Level II</th>
<th>Level III</th>
<th>Level IV</th>
<th>Level V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Methane Concentration (ppmv)</td>
<td>0–100</td>
<td>101–1,000</td>
<td>1,001–5,000</td>
<td>5,001–12,500</td>
<td>>12,500</td>
</tr>
<tr>
<td>Design Methane Pressure (inches of water pressure)</td>
<td>2</td>
<td>>2</td>
<td>2</td>
<td>>2</td>
<td>2</td>
</tr>
<tr>
<td>De-watering System</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Perforated Horizontal Pipes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gravel Blanket Thickness Under Impervious Membrane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel Thickness Surrounding Perforated Horizontal Pipes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent Risers</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Impervious Membrane</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pressure Sensors Below Impervious Membrane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Extraction System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Detection System</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mechanical Ventilation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Alarm System</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Control Panel</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trench Dam</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Conduit or Cable Seal Fitting</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Additional Vent Risers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X = Indicates a Required Mitigation Component

1. See Section 91.7104.3.7 for exception.
2. The Mechanical Extraction System shall be capable of providing an equivalent of a complete change of air every 20 minutes of the total volume of the Gravel Blanket.
3. See Section 91.7104.3.1 for Narrow Buildings.
4. The Mechanical Ventilation systems shall be capable of providing an equivalent of one complete change of the lowest occupied space air every 15 minutes.
5. Vent opening complying with Section 91.7104.3.4 may be used in lieu of mechanical ventilation.
6. The total quantity of installed Vent Risers shall be increased to double the rate for the Passive System.

IV.E Hazards and Hazardous Materials

- **Gravel Blanket**: a layer of gravel, sand or approved material designed to transmit gas to the vent riser without obstructing the venting system;

- **Impervious Membrane**: a continuous gas barrier made of material approved by the Department of Building and Safety and installed beneath a building for the purpose of impeding methane migration to the interior of the building;

- **Mechanical Extraction System**: a system operated by a machine which is designed to remove methane gas from below the impervious membrane through the use of fans, blowers or other powered devices;

- **Mechanical Ventilation**: a fan, blower or other similar group of interacting elements operated by a machine within the building, which introduce and/or remove air from an enclosed space;

- **Perforated Horizontal Pipe**: an approved pipe which contains a series of small holes or narrow openings placed equidistant along the length of the approved pipe, which is placed horizontally beneath the foundation of a building, for the purpose of venting accumulated methane gas and preventing the development of elevated gas pressures or for drainage of ground water to an approved location;

- **Pressure Sensor**: a device that measures and communicates surrounding gas pressure to an alarm or control system;

- **Single Station Gas Detector**: a device consisting of electrical components capable of measuring methane gas concentration and initiating an alarm;

- **Trench Dam**: an approved subsurface barrier installed within a furrow or ditch adjacent to the foundation of a building, for the purpose of preventing the migration of methane gas beneath that foundation; and

- **Vent Riser**: an approved pipe, which is placed vertically with joints and fittings connected to Perforated Horizontal Pipes to convey and discharge the gas to the atmosphere.

During construction, naturally occurring methane may ignite and cause an explosion during construction activities. Mitigation measures MM-HAZ-8 and MM-HAZ-9 would comply with City Methane Seepage Regulations. As such, impacts would be reduced to a level less than significant. This would reduce impacts for an accidental release or explosion of hazardous substance to a less than significant level.

c. Cumulative Impacts

The hazardous impacts associated with a proposed project usually occur on a project-by-project basis, rather than in a cumulative nature. Because project implementation would comply with regulatory controls to abate the site-specific hazards, any potential cumulative impacts associated with the project would be decreased, as the harmful substances and subsequent exposure to a health hazard would be
removed from the project site. Therefore, cumulative impacts associated with the proposed project are considered less than significant.

d. Mitigation Measures

Soil Contamination Mitigation

MM-HAZ-1. Prior to the demolition/grading activities contractors shall be required to have a construction worker safety plan that complies with OSHA Safety and Health Standards and shall address, as appropriate, air monitoring for sub-surface work activities, personnel protective and safety equipment, and worker training.

MM-HAZ-2. Identified impacts to soil and/or groundwater beneath the project site shall be addressed under a site-specific independent removal action. An assessment of the potential risk to human health and the environment resulting from the identified impacts to soil and groundwater at the project site and the proposed removal action shall be presented within a Draft Removal Action Workplan (RAW). The RAW shall provide proposed remediation goals for each constituent of potential concern and shall be submitted to the LARWQCB for review and comment prior to implementation.

MM-HAZ-3. Prior to excavation and/or grading the applicant shall prepare and provide to contractors a Risk Management Plan (RMP) that describes the type of contaminants and subsurface features that may be encountered at the project site and procedures for evaluating and managing such materials.

MM-HAZ-4. Grading and demolition contractors shall be required by construction specifications to secure approval of haul routes to export or otherwise transport off-site excavated materials prior to commencement of such activity.

MM-HAZ-5. Residual soil and groundwater, which may require special handling and was not addressed during the proposed independent removal action, shall be addressed under a Risk Management Plan (RMP). The RMP shall be implemented during construction and shall present site-specific health and safety protocols and soil/groundwater handling procedures.
Asbestos Mitigation

MM-HAZ-6. Prior to demolition, the project applicant shall comply with applicable legal requirements related to asbestos removal and demolition activities involving ACBM, including the requirements of the SCAQMD Rule 1403 for ACBMs.

Lead-Based Paint Mitigation

MM-HAZ-7. The project applicant shall comply with the requirements outlined by Cal/OSHA Lead in Construction Standard, Title 8, CCR 1532.1 during demolition activities. Lead-contaminated debris shall be managed and disposed of in accordance with the applicable provisions of the California Health and Safety Code.

Methane Mitigation

MM-HAZ-8. Prior to issuance of a building permit, applicant shall comply with the City Methane Seepage Regulations, Section 91.7100 et seq. of Los Angeles Municipal Code.

MM-HAZ-9. Should any unrecorded oil well be found during excavation and grading, it shall be abandoned in accordance with DOGGR Regulations. Prior to issuance of any building permit within a lot affected by discovery of an unrecorded oil well, the applicant shall submit a final clearance letter issued by DOGGR regarding the proper abandonment of the well(s).

e. Adverse Effects

With implementation of the mitigation measures listed above, potential impacts related to hazards and hazardous materials would be reduced to a less than significant level.